posted on 2023-11-29, 05:10authored byQi-Fan Yang, Boqiang Shen, Heming Wang, Minh Tran, Zhewei Zhang, Ki Youl Yang, Lue Wu, Chengying Bao, John Bowers, Amnon Yariv, Kerry Vahala
Acquisition of laser frequency with high resolution under continuous and abrupt tuning conditions is important for sensing, spectroscopy and communications. Here, a single microresonator provides rapid and broad-band measurement of frequencies across the optical C-band with a relative frequency precision comparable to conventional dual frequency comb systems. Dual-locked counter-propagating solitons having slightly different repetition rates are used to implement a Vernier spectrometer. Laser tuning rates as high as 10 THz/s, broadly step-tuned lasers, multi-line laser spectra and also molecular absorption lines are characterized using the device. Besides providing a considerable technical simplification through the dual-locked solitons and enhanced capability for measurement of arbitrarily tuned sources, this work reveals possibilities for chip-scale spectrometers that greatly exceed the performance of table-top grating and interferometer-based devices.