Optica Open
Browse

Versatile Full-Field Optical Coherence Tomography with Adjustable Transmission-to-Reflection Ratio and Enhanced Signal-to-Noise Ratio

Download (5.58 kB)
preprint
posted on 2024-10-18, 16:00 authored by Youlong Fan, Qingye Hu, Zhongping Wang, Zengming Zhang, Xiantao Wei
Traditional full-field optical coherence tomography (FF-OCT) is effective for rapid cross-sectional imaging but often suffers from incoherent signals due to imbalanced light intensities between the sample and reference arms. While the high-throughput dark-field (HTDF) FF-OCT technique employs an asymmetric beamsplitter (BS) to achieve an asymmetric beam-splitting ratio and optimize the utilization of available light, the fixed beam-splitting ratio in the optical system limits HTDF FF-OCT to effectively measuring only specific types of samples with certain scattering intensities. To address this limitation, we propose a more versatile FF-OCT system with an adjustable transmission-to-reflection ratio. This system enables accurate measurement across a broader range of samples by optimizing the light source and finely tuning the polarization to achieve the ideal ratio for different materials. We also observed that both signal-to-noise ratio (SNR) and imaging depth are influenced by the beam-splitting ratio. By precisely adjusting the beam-splitting ratio, both SNR and imaging depth can be optimized to achieve their optimal values.

History

Related Materials

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC