Optica Open
Browse

Visible to Ultraviolet Frequency Comb Generation in Lithium Niobate Nanophotonic Waveguides

Download (5.58 kB)
preprint
posted on 2023-05-17, 16:01 authored by Tsung-Han Wu, Luis Ledezma, Connor Fredrick, Pooja Sekhar, Ryoto Sekine, Qiushi Guo, Ryan M. Briggs, Alireza Marandi, Scott A. Diddams
The introduction of nonlinear nanophotonic devices to the field of optical frequency comb metrology has enabled new opportunities for low-power and chip-integrated clocks, high-precision frequency synthesis, and broad bandwidth spectroscopy. However, most of these advances remain constrained to the near-infrared region of the spectrum, which has restricted the integration of frequency combs with numerous quantum and atomic systems in the ultraviolet and visible. Here, we overcome this shortcoming with the introduction of multi-segment nanophotonic thin-film lithium niobate (LN) waveguides that combine engineered dispersion and chirped quasi-phase matching for efficient supercontinuum generation via the combination of $\chi^{(2)}$ and $\chi^{(3)}$ nonlinearities. With only 90 pJ of pulse energy at 1550 nm, we achieve gap-free frequency comb coverage spanning 330 to 2400 nm. The conversion efficiency from the near-infrared pump to the UV-Visible region of 350-550 nm is nearly 20%. Harmonic generation via the $\chi^{(2)}$ nonlinearity in the same waveguide directly yields the carrier-envelope offset frequency and a means to verify the comb coherence at wavelengths as short as 350 nm. Our results provide an integrated photonics approach to create visible and UV frequency combs that will impact precision spectroscopy, quantum information processing, and optical clock applications in this important spectral window.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC