Optica Open
Browse
arXiv.svg (5.58 kB)

Visualization of higher-order topological insulating phases in two-dimensional dielectric photonic crystals

Download (5.58 kB)
preprint
posted on 2023-11-30, 06:44 authored by Bi-Ye Xie, Guang-Xu Su, Hong-Fei Wang, Hai Su, Xiao-Peng Shen, Peng Zhan, Ming-Hui Lu, Zhen-Lin Wang, Yan-Feng Chen
The studies of topological phases of matter have been extended from condensed matter physics to photonic systems, resulting in fascinating designs of robust photonic devices. Recently, higher-order topological insulators (HOTIs) have been investigated as a novel topological phase of matter beyond the conventional bulk-boundary correspondence. Previous studies of HOTIs have been mainly focused on the topological multipole systems with negative coupling between lattice sites. Here we experimentally demonstrate that second-order topological insulating phases without negative coupling can be realized in two-dimensional dielectric photonic crystals (PCs). We visualize both one-dimensional topological edge states and zero-dimensional topological corner states by using near-field scanning technique. To characterize the topological properties of PCs, we define a novel topological invariant based on the bulk polarizations. Our findings open new research frontiers for searching HOTIs in dielectric PCs and provide a new mechanism for light-manipulating in a hierarchical way.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC