posted on 2023-11-30, 21:04authored byAdam F. McKenzie, Ben C. King, Katherine J. Rae, Stephen Thoms, Neil D. Gerrard, Jonathan Orchard, Kenishi Nishi, Keizo Takemasa, Mitsuru Sugawara, Richard J. E. Taylor, David T. D. Childs, Donald A. McLaren, Richard A. Hogg
We report the engineering of air-voids embedded in GaAs-based photonic crystal surface emitting lasers realised by metalorganic vapour-phase epitaxy regrowth. Two distinct void geometries are obtained by modifying the photonic crystal grating profile within the reactor prior to regrowth. The mechanism of void formation is inferred from scanning transmission electron microscopy analysis, with the evolution of the growth front illustrated though the use of an AlAs/GaAs superlattice structure. Competition between rapid lateral growth of the (100) surface and slow diffusion across higher index planes is exploited in order to increase void volume, leading to an order of magnitude reduction in threshold current and an increase in output power through an increase in the associated grating coupling strength.
History
Disclaimer
This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.