Optica Open
Browse
- No file added yet -

Water-induced high-performance quantum-dot light-emitting diodes

Download (5.58 kB)
preprint
posted on 2024-09-10, 16:00 authored by Wangxiao Jin, Siyu He, Xiuyuan Lu, Xitong Zhu, Dijiong Liu, Guolong Sun, Yanlei Hao, Xiaolin Yan, Yiran Yan, Longjia Wu, Xiongfeng Lin, Wenjun Hou, Weiran Cao, Chuan Liu, Xiaoci Liang, Yuan Gao, Yunzhou Deng, Feng Gao, Yizheng Jin
Solution-processed light-emitting diodes (LEDs) are appealing for their potential in the low-cost fabrication of large-area devices. However, the limited performance of solution-processed blue LEDs, particularly their short operation lifetime, is hindering their practical use in display technologies. Here, we demonstrate that trace water in device, previously considered detrimental to most solution-processed LEDs, dramatically enhances the performance of quantum-dot LEDs (QLEDs). This breakthrough stems from our comprehensive mechanism investigations into the positive ageing phenomenon, a long-standing puzzle in the QLED field. Our findings reveal that water passivation on the surface of electron-transport layers, which are composed of zinc-oxide-based nanoparticles, improves charge transport and enhances exciton radiative recombination during device operation. Combined with the advanced top-emitting architecture, our blue QLEDs achieve a high current efficiency of 35.5 cd A-1, a blue index (colour coordinate corrected current efficiency) of over 470 cd A-1 CIEy-1, and unprecedented stability, with an extrapolated T95 lifetime (at an initial brightness of 1,000 cd m-2) of 287 hours. Our work may inspire further exploration into surface passivation of nanocrystalline functional layers, critical for the advancement of emerging solution-processed optoelectronic and electronic devices.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC