Solution-processed light-emitting diodes (LEDs) are appealing for their potential in the low-cost fabrication of large-area devices. However, the limited performance of solution-processed blue LEDs, particularly their short operation lifetime, is hindering their practical use in display technologies. Here, we demonstrate that trace water in device, previously considered detrimental to most solution-processed LEDs, dramatically enhances the performance of quantum-dot LEDs (QLEDs). This breakthrough stems from our comprehensive mechanism investigations into the positive ageing phenomenon, a long-standing puzzle in the QLED field. Our findings reveal that water passivation on the surface of electron-transport layers, which are composed of zinc-oxide-based nanoparticles, improves charge transport and enhances exciton radiative recombination during device operation. Combined with the advanced top-emitting architecture, our blue QLEDs achieve a high current efficiency of 35.5 cd A-1, a blue index (colour coordinate corrected current efficiency) of over 470 cd A-1 CIEy-1, and unprecedented stability, with an extrapolated T95 lifetime (at an initial brightness of 1,000 cd m-2) of 287 hours. Our work may inspire further exploration into surface passivation of nanocrystalline functional layers, critical for the advancement of emerging solution-processed optoelectronic and electronic devices.
History
Disclaimer
This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.