Optica Open
Browse

Weakly nonlinear topological gap solitons in Su-Schrieffer-Heeger photonic lattices

Download (5.58 kB)
preprint
posted on 2023-11-30, 20:52 authored by Min Guo, Shiqi Xia, Nan Wang, Daohong Song, Zhigang Chen, Jianke Yang
We study both theoretically and experimentally the effect of nonlinearity on topologically protected linear interface modes in a photonic Su-Schrieffer-Heeger (SSH) lattice. It is shown that under either focusing or defocusing nonlinearity, this linear topological mode of the SSH lattice turns into a family of topological gap solitons. These solitons are stable. However, they exhibit only a low amplitude and power and are thus weakly nonlinear, even when the bandgap of the SSH lattice is wide. As a consequence, if the initial beam has modest or high power, it will either delocalize, or evolve into a soliton not belonging to the family of topological gap solitons. These theoretical predictions are observed in our experiments with optically induced SSH-type photorefractive lattices.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC