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Abstract

Ultrafast optics and high-power laser systems are the backbone of nearly every
major industry from semiconductor manufacturing and telecommunications to ad-
vanced medical procedures and next-generation energy and defense solutions. With
the increasing integration of machine learning (ML) into laser system design, there
is a growing demand for efficient data generation to aid experiment design, perform
in-situ optimization, and improve the efficacy of system-wide digital twins. Toward
this end, we present a novel start-to-end (S2E) modeling framework for complex
laser systems that can be tailored to specific applications for large data generation.
The simulation output can then be used in a wide variety of ML tasks from predict-
ing pulse propagation behavior and laser system controls optimization to diagnostic
characteristics extraction. However, the models, by necessity, can involve solving
several coupled partial and ordinary differential equations including the Nonlinear
Schrödinger Equation (NLSE), gain dynamics, and Maxwell’s equations, depend-
ing on the framework configuration. These complex cascaded nonlinear systems
of equations become a significant time bottleneck in generating large quantities
of data. To demonstrate a broad impact application of ML enhancing ultrafast
optics simulations, we aim our studies on using long short-term memory (LSTM)
networks to replace solving the NLSE for sum-frequency generation, a nonlinear
optical process involving the interaction of three fields. We show how these models
can provide significant speed-up for large data generation and can ultimately enable
an S2E framework to be applied broadly across applications in the ultrafast optics
field. Finally, we discuss a metric for assessing the performance of these networks
in the context of the optics domain.

1 Introduction

Since the development of chirped pulse amplification (CPA) of optical pulses and the subsequent
rise of ultrafast optics [1], CPA systems have driven the rapid advancements in high power laser
systems, ultrashort pulse lasers, and nonlinear optical (NLO) systems that underlie almost every
major technology in the modern world. CPA and NLO systems are required for semiconductor
manufacturing and precision machining [2, 3], telecommunications [4], biomedical imaging [5],
fusion energy [6], particle accelerators [7, 8], a wide array of defense and security measures [9],
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and many other sectors. The impending era of optics and photonics will focus on machine-assisted
optimization, intelligent ground-up design, and inverse design, which will all take advantage of
the current push for integrating machine learning (ML) [10, 11]. However, the considerable data
requirement to navigate the complexities of cascaded components in laser systems, each unique,
presents a significant challenge due to the notoriously time-consuming data collection process.

We have developed a start-to-end (S2E) software model for simulating laser systems involving CPA
and NLO devices [12]. This model renders time and frequency-resolved electromagnetic fields
alongside essential physical characteristics of energy, fluence, and spectral distribution, providing
a substantial data source for ML models and applications. However, the data generation process is
hindered by bottlenecks when solving coupled nonlinear equations, like the generalized Nonlinear
Schrödinger Equation (NLSE). To overcome this, we employ a long short-term memory (LSTM)
model, trained on a large dataset generated by our S2E framework, to replace the simulation blocks
solving the NLSE. Here, we showcase how our framework can be used to generate critical, application-
specific datasets; a tailored dataset; how we use such a dataset for developing an LSTM to further
accelerate future optical system simulations; and an evaluation metric. This paper outlines the specific
application area, simulation setup, data reduction and preprocessing methods, and investigates the
LSTM’s performance in solving the NLSE for a three-field mixing process.

2 Background

Showcasing the robustness of the S2E framework requires demonstrating it on a sufficiently complex
laser system. Here, we choose the drive laser system at SLAC National Accelerator Laboratory’s
LCLS-II, the world’s most powerful X-ray free-electron laser (XFEL) [13]. This laser system
involves linked CPA and NLO systems (fig. 1), specifically incorporating a mode-locked oscillator,
a pulse shaper, a CPA regenerative amplifier, and NLO upconversion. The gain dynamics of the
CPA system are modeled using the modified Franz-Nodvik equations [14] and the pulse shaper is
modeled with a frequency-domain transfer function. For the NLO upconversion, we use dispersion-
controlled nonlinear synthesis (DCNS), which employs noncollinear sum-frequency generation (SFG)
by interacting two pulsed laser beams at a set angle to render temporally-shaped flat-top upconverted
pulses [15]. The nonlinear process takes place in a medium with a nonlinear response–here, a
crystal–and is governed by coupled equations for each of the three fields

dAi

dz
=

2i · deff · ω
kic2

·Aj ·Ak · e−i∆kz (1)

where z is the distance along the crystal, deff represents the nonlinearity tensor, i, j, k represent the
three mixing fields, ∆k represents phase matching, and ω is the frequency.

Figure 1: Laser system model incorporating initial oscillator, pulse shaper, amplifier, and upconversion
process where each module has externally loaded parameters. Here, we package data from before
and after the NLO DCNS upconversion process for use in an LSTM.

Fig. 2 illustrates the input/output structure of this crystal. The SFG process, specifically, involves the
interaction of these two laser pulses, or fields, within this nonlinear medium [16] culminating in a
third field produced at a frequency equivalent to the sum of the two input fields (labeled as output 2
or SFG). As the process is noncollinear, with the two input fields entering the medium at an angle,
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two additional outputs emerge, corresponding to a process called second-harmonic generation (SHG)
applied to each input independently (input 1 yields output 3 and input 3 yields output 1). For our
work, these two input fields are derived from the same initial field but are subject to equal yet opposite
second- and third-order phase modulation [15] in order to achieve a specific output pulse shape.

Figure 2: DCNS setup as a three-input, three-output system that propagates the fields from start to
end where identical LSTM layers can replace each slice in the medium.

Simulating the entire series of cascaded processes in fig. 1 is essential for characterizing and exploring
system-wide capabilities as well as performing setup optimizations based on large datasets generated
from the cascaded models. The dataset generated from our S2E framework for this study scans
through different pulse shaper parameters to inspect the downstream effects on the NLO DCNS
process. These S2E simulations require accurate models for each sub-component. Traditionally,
DCNS upconversion is simulated by solving the coupled equations numerically with split-step Fourier
and fourth-order Runge-Kutta (RK4) methods, which discretize the crystal and propagate a solution
through the medium [17, 18, 19]. Here, these computationally intensive procedures account for 1.85s
of the 1.98s, or over 93%, for one iteration of the simulator, creating a significant bottleneck. This
can be detrimental in cases where fast system exploration is required, such as in future research
linking simulation and lab-collected data for controls. To overcome this, we propose reframing the
problem as a three-input, three-output network with one input field (input 2 in fig. 2) set to identically
zero. We then employ an LSTM network to simulate each slice in the crystal, effectively learning the
propagation function within the medium, offering a more efficient alternative, and, simultaneously,
showcasing one such use-case for the dataset we generated from the S2E framework.

Our approach is inspired by Salmela, et al. [20], who demonstrated the efficacy of LSTMs in predicting
ultrafast dynamics in optical fiber simulations. While their study focused on a single input single
output process, tracking only spectral intensity, it presented good alignment with numerical solutions
to the NLSE and achieved a speedup factor of ∼ 270 times for single-mode NLSE simulations and
a speedup factor of ∼ 11400 times for multi-mode NLSE simulations where, in both cases, the
NLSE was run on CPU and the LSTM on GPU. The same group similarly explored feed-forward
neural networks as a nonlinear dynamics integrator for the specific application of supercontinuum
generation [21]. Others have since explored convolutional neural networks [22], various extensions
with recurrent neural network architectures [23, 24], and physics-informed neural networks [25],
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predominantly in wave guides. Our study extends this concept to a more complex system, addressing
intensity and phase tracking in noncollinear sum-frequency generation in our DCNS method.

While the equations that govern our system and the one for Salmela, et al. [20] are similar, our
system solves for 3 full fields–intensity and phase–as opposed to solely the intensity of a single field.
Furthermore, we modulate the fields upstream of the DCNS process and keep the parameters of the
DCNS NLO section stationary, exploring how the prior pulse shapes are propagated in free-space
and the crystal. Our system incorporates the parameters for each component along the cascaded
simulation chain, as shown in fig. 1. These parameters influence various aspects of the process,
including the initial pulse shaper parameters altering input pulse shape, the CPA parameters altering
the spectrum, and the DCNS internal parameters altering the propagated pulse (see Hirschman, et
al. [12]). With this model, we generate a large data repository for an LSTM to learn the impact of
spectral phase and amplitude shaping from the pulse shaper on NLO upconversion outcomes.

3 Data Generation and Processing

Initial dataset generation runs the S2E simulator using the standard numerical methods for each
module. Since the NLO DCNS simulation uses a split-step Fourier method, the input data must have
sufficient sampling in both the frequency and temporal domains to capture the short laser pulses’
electric field oscillations during the forward and inverse Fourier transforms. On the contrary, using an
LSTM in the time or frequency domain relaxes this high sampling requirement since it can operate
in just one domain, allowing for significant data reduction. For the preparation of the data for the
LSTM, we transform the data from simulation through two rounds of preprocessing.

The first round downsamples and cuts vectors for one domain from all three fields in the simulation,
packages the fields into one vector, and stores this data (see supplementary material). Table 1 shows
the vector sizes from initial simulation, after downsampling, and after cutting.

Table 1: Vector sizes of three fields from initial simulation, downsampling, and cutting.

SHG 1 SHG 2 SFG

Initial 32768 32768 32768
Downsampled 10589 10589 4681
Downsampled & Cut 1892 1892 348

Fig. 3a–c show these corresponding waveforms for one example input in the frequency domain,
decomposing the full field into intensity (solid) and phase (dashed). The first row shows the SFG
signal and the second and third rows show the SHG 1 and SHG 2 signals. To check that the
downsampling and cutting of the frequency domain field does not adversely affect the represented
information, we transform the data into the time domain. If the vector was cut or downsampled
too much, the time domain signal would show significant variations from the true time domain
signal. Fig. 3d–f show both the true time domain field and a version that is the direct inverse Fourier
transform of the downsampled and cut frequency domain signal (labeled as direct). However, this
direct inverse Fourier transform does not yield a reasonable signal because the initial vector lengths
and domain spacings are chosen carefully for the Fourier transforms to yield physical results. Thus,
we first resample and smooth the downsampled and cut field back onto the original domain prior to
taking the inverse Fourier transform (labeled as resampled). This comparison of resampled and true
time domain vectors provides a means of evaluating our data reduction (see supplementary material).

The second round of preprocessing concatenates the fields such that they are compatible with the
LSTM model. We show two ways this can be done: 1) three field intensities normalized to energy
followed by three field phases normalized by π along with the 3 corresponding energy values from
the fields at the end (see fig. 4a) and 2) real portion of three fields followed by imaginary portion of
three fields (see fig. 4c). Version 1 is a total of 2 ·1892 (SHG 1)+2 ·1892 (SHG 2)+2 ·348 (SFG)+
3 (energies) = 8267 elements long, and version 2 is 2 · 1892 (SHG 1) + 2 · 1892 (SHG 2) + 2 ·
348 (SFG) = 8264 elements long. Due to the fluctuations present in the phase of version 1, we
proceed in the main manuscript with version 2 processing (see supplementary for more information).
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Figure 3: Shows the first step in the data preprocessing in the frequency domain (left column) for all
fields (rows 1–3) as well as the time domain counterpart (right column). For all plots, the solid line is
the normalized field intensity and the dashed line is the field phase.

Before feeding these vectors into the LSTM, we scale each input element to between 0 and 1 across
all instances (see fig. 4b and fig. 4d for data arrangements and supplementary for details on rescaling).

4 LSTM Model & Results

While our primary goals are to present a data generation framework designed for machine learning in
ultrafast optics and photonics and to provide a large dataset that explores pulse shaping effects on
upconversion, our secondary goals are to demonstrate a targeted ML application using this dataset
and provide an evaluation metric useful for the optics community. In particular, we want to explore an
ML application that improves the ability to generate future data sets. Here, we use an LSTM network
to replace the bottleneck of the simulation and evaluate the network based on accuracy and latency.

The LSTM model mimics a single slice in the nonlinear crystal where the behavior depends on
previous steps. We use an LSTM with access to the 10 last spatial steps, where 10 was chosen
from a balance of providing enough history–capturing information in the dynamics without over-
emphasizing old behavior–while limiting total latency. The crystal has 100 spatial steps, so the
simulation employs the split-step Fourier method iteratively 100 times and thus outputs a total of 101
slices. Therefore, each simulation result can be used to generate 100 instances of training data or
validation data. Each instance is composed of an input array X consisting of the last 10 slices and an
output array y representing the proceeding slice. In the initial 9 instances, fewer than 10 previous
slices are available, so the input array is prepended by identical copies of the initial input to the crystal

5



Figure 4: Shows one example demonstrating the second stage data preprocessing options. Version 1
(first column) arranges data into spectral intensity, phase, and energies. Version 2 (second column)
splits data into real and imaginary portions of the field. The second row shows min-max normalized
version of the first. All fields are in the frequency domain, but the exact domain points are arbitrary.

until the full input reaches a length of 10, with the subsequent slice as the output. The final shapes
are (batch size, 10, 8264) for X and (batch size, 8264) for y, depending on the version of data used.

We then explored LSTM architectures of varying depth and size of LSTM and fully connected layers
as well as activation functions. For the loss function, we use weighted mean squared error (wMSE)

wMSE = cSFG ×MSESFG + cSHG × (MSESHG 1 +MSESHG 2) (2)

where cSFG and cSHG control the significance for the SFG and SHG outputs, respectively, and we
use Adam as the optimizer with the default hyperparameters in PyTorch.

All models are trained on 890,000 instances, validated on 10,000 instances and tested on 90,000
instances. During the training process and hyperparameter search on models for small epochs, we
found the combination of cSFG = 0.7 and cSHG = 0.3 works best for minimizing the training loss.

The best-performing model consists of 1 LSTM layer with hidden size 2048 and three linear layers
with shapes (2048, 4096), (4096, 4096), and (4096, 8624) and activation ReLu, Tanh, and Sigmoid,
respectively. We trained this model for 180 epochs for 160 hours on one NVIDIA A10G GPU hosted
by Amazon Web Services resulting in a final training error of 2.05E-5 and validation error of 2.03E-5.

For inference, the LSTM loop is initiated with a “cold start” where the input sequence contains only
the profile of pulses injected into the crystal, repeated 10 times. The LSTM model then runs 100
iterations for full propagation through the crystal using a sliding window mechanism, where, for each
new prediction, the oldest slice in the input is discarded, and the latest model prediction is appended.

The key change for evaluating the test set is to focus on intensities of the field and allow for weighting
of time and frequency domains. We calculate a normalized MSE (NMSE) error on the temporal
intensity and spectral intensity profiles (see eq. 3) individually for SFG, SHG 1, and SHG 2, while all
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training and training assessments are conducted in the frequency domain. NMSE is required to adjust
for differences in magnitude between the time domain intensities and frequency domain intensities.

wNMSEeval = ct ×NMSEt,SFG/SHG 1/SHG 2 + cf ×NMSEf,SFG/SHG 1/SHG 2 (3)

where

NMSE =
Σi(xi − yi)

2

Σi(yi)2
(4)

and where xi and yi are the prediction and truth intensities and ct and cf scale time and frequency
contributions, respectively. For the generalized case, ct = cf = 0.5. This can be altered for
applications that might emphasize spectrum more substantially, like spectroscopy experiments, or
temporal intensity more substantially, like laser-photocathode interactions.

Table 2: Inference errors for both NMSE evaluation weighting schemes.

ct, cf = 1, 0 ct, cf = 0.5, 0.5

SFG SHG 1 SHG 2 SFG SHG 1 SHG 2
Full Set Mean Error 1.08E-1 2.70E-2 2.79E-2 1.03E-1 2.67E-2 2.67E-2

Minimal Hole
Example

Error 8.68E-4 3.47E-4 3.00E-4 6.24E-4 4.92E-4 4.39E-4
Percentile 5th 5th 5th 5th 5th 5th

Large Hole
Example

Error 3.54E-2 5.56E-2 5.41E-2 3.79E-2 7.22E-2 7.14E-2
Percentile 50th 90th 90th 55th 95th 95th

For our application of photoinjector lasers, we are primarily concerned with the temporal profile of
the SFG pulse, so we select examples based on inspection of this error. We are also interested in how
these errors compare with the even weighting between time and frequency. Table 2 shows the full set
average errors across all test data for SFG, SHG 1, and SHG 2 for both the exclusive time domain and
even weighting as well as the errors and associated percentiles for the minimal and large spectral hole
examples shown in fig. 5. Specifically, fig. 5 shows the true and predicted results for SFG and SHG 1
for two examples from the test dataset–fig. 5a–d for one with only phase shaping and fig. 5e–h for one
with amplitude and phase shaping. The first example prediction matches closely for both SFG and
SHG 1 in both domains. The second example, which includes the amplitude shaping that produces a
significant spectral hole in the SHG 1 spectral intensity, captures the SFG signal very closely and
only misses portions of the frequency in the SHG 1 around large swings in amplitude. However, the
error still seems large because generally the spectral amplitude shaping examples that contain a hole
are more difficult for the network to learn, yet this example still yields a high quality output visually.

Moreover, the predictions have a significant speedup compared to numerical simulation. Table 3
shows timing analysis for running the trained LSTM network versus the traditional numerical method
for various configurations of GPU and CPU setups, including single and multi-CPU/GPU systems.
The baseline is the traditional numerical simulation, which can only be carried out on a single CPU
sequentially. Running the LSTM with a batch size of 200 on 1 CPU does not yield a speedup over
baseline. However, parallelizing across 8 CPUs does. Using one NVIDIA Tesla A100 with 40 GB of
memory on the S3DF cluster at SLAC National Laboratory and with all data loaded into memory, we
achieve a speedup of 252 over baseline numerical simulation (see supplementary information).

5 Conclusion

Merging ultrafast optics with machine learning and machine assisted design will bring about a new
era of laser system development–an era focused on efficient development and deployment, real-time
tunability, and inverse design. Start-to-end modeling frameworks play a crucial role in generating
data for these designs and enable ML networks to have access to large quantities of simulation data or
physical experiment data modulated by simulation. In this paper, we presented a dataset generated for
the photoinjector laser system at SLAC that involves complex cascaded coupled nonlinear processes.
The generated dataset can be used for a number of different ML applications, from learning the
pulse shaper parameters used to create downstream output fields to pulse characteristic extraction
and reconstruction. We target the data generation process itself, identifying and replacing the major
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Figure 5: Shows 2 example predictions from test dataset comparing prediction versus true for SFG
(output 2) and SHG 1 (parasitic output 1) in frequency (left) and time (right) domains. Solid line
represents field intensity (or fluence where ∆d is the domain spacing) and dashed line is the field
phase (offset manually when overlapped). a–d are for minimal spectral amplitude shaping from the
pulse shaper, and e–f have a significant spectral hole (seen clearly in g) carved from the pulse shaper.

bottleneck with an LSTM to drastically reduce latency. We present an LSTM that is able to learn this
complex process and predict the output shape of three full fields from the three-input, three-output
system. Moreover, scanning through a large input parameter space and using this LSTM on 1 GPU for
the full S2E simulation presented here reduces the total per instance simulation time by an impressive
93%, from 1.98s to ∼0.137s.
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Table 3: Inference performance comparison across various configurations of CPU and GPU setups.

Resources Batch size Time for 1,000
instances (s)

Time per
instance (s) Speedup

Baseline
Simulation

1 CPU 1 1,875 1.875 -

1 CPU 200 2015.6 2.0156 0.9

LSTM 8 CPU 200 640.3 0.6403 2.9

1 GPU 200 7.43 0.00743 252.4

These initial results demonstrate the efficacy of the LSTM approach and associated error functions.
In future work, we will explore alternative data formats and ML models. For example, reformatting
the fields as spectrograms in each slice of the crystal could lend itself to diffusion models to predict
the field changes through the nonlinear medium. Furthermore, the complexity of the data can be
expanded. We only altered the pulse shaper parameters in the simulation chain. In future studies, we
will focus on adjusting the parameters controlling the DCNS process itself, making any learned model
much more robust. Finally, we want to take advantage of the recent advances in physics-informed
neural networks (PINNs) [26], which use the known governing dynamics of the system to both
improve output predictions and increase model robustness. Such PINNs have been used to replace a
split-step Fourier method for solving nonlinear dynamics in fiber optics [27]. More recently, LSTMs
and PINNs have been combined together for various applications of parameter estimation in nonlinear
systems [28, 29]; however, to the best of our knowledge, have not been jointly used to solve optical
pulse propagation in fibers or in free-space. Thus this combination of LSTM and PINN is the next
major area we want to explore for accelerating data generation in ultrafast optics and laser system
design.

All of these studies are applicable in other areas of ultrafast optics outside of just this DCNS method
as well. For instance, another popular upconversion scheme is four-wave mixing in fibers, which use
similar principles as the SFG process but with an additional field and with gas-filled or hollow-core
photonic crystal fibers as the nonlinear medium [30, 31, 32]. Achieving robust models that can handle
the multitude of different optical systems will be increasingly important as photonics transitions into
the new age of machine learning. Our work on robust modeling frameworks for large data generation
will play a crucial role in bringing these advances to fruition.
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