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Abstract: An imperfect propagation environment or optical system would introduce wavefront
aberrations to vortex beams. The phase aberrations and orbital angular momentum in a vortex
beam are proved to be mutually restrictive in parameter measurement. Aberrations make
traditional topological charge (TC) probing methods ineffective while the phase singularity
makes phase retrieval difficult due to the aliasing between the wrapped phase jump and the
vortex phase jump. An interactive probing method is proposed to make measurements of the
aberrated phase and orbital angular momentum in a vortex beam assist rather than hinder each
other. The phase unwrapping is liberated from the phase singularity by an annular shearing
interference technique while the TC value is determined by a Moiré&technique immune to
aberrations. Simulation and experimental results proving the method effective are presented. It
is of great significance to judge the characteristics of vortex beams passing through non-ideal
environments and optical systems.

1. Introduction

An optical vortex beam has a phase singularity with orbital angular momentum presenting
helical phase fronts [1, 2]. The vortex phase term [ implies an orbital angular momentum of
Ik with | being the topological charge (TC). The TC value and phase distribution are typically
the most important indices to characterize a vortex beam. A lot of studies focus on measuring
the two characteristics but are limited to those of approximately ideal beams or those with small
aberrations. An imperfect propagation environment or optical system would introduce large
wavefront aberrations to the vortex beam, where measurements of both phase and TC are
challenging.

Several methods have been developed to determine the TC of vortex beams, such as
diffraction methods [3-8], interferometry [9-17], mode transformation [18, 19], and deep
learning [20-22]. As the most intuitive method, interference and diffraction methods become
mainstream procedures, which include self-interference [16, 20], conjugated beam interference
[15], multiple-pinhole interference [9, 16], double-slit interference [10], single-slit diffraction
[4], triangular aperture diffraction [3, 5, 8], annular aperture diffraction [12] and so on. All
these methods depend on the judgment of subsequent regular intensity patterns, such as
bifurcations of interference fringes [13], 21 petals of conjugated vortex beam interference [15],
and other regular diffraction patterns [9-16]. However, these distribution regularities would be
broken in the case of a vortex beam of large aberrations, leading to a misdiagnosis of the TC
number. The aberration sensitivity performance of traditional TC determination examples is
shown in Figs. 1(a)-1(d). The bifurcations of interference fringes are indiscernible in the case
of large I and large aberrations due to the hollow intensity distribution and indistinguishable
interference fringes, as shown in Fig. 1(a). Figure 1(b) illustrates the 2I petals of the conjugated
vortex beam interference pattern. With aberrations, the phase flip accompanied by the TC
conjugation would break the regularities of petals as shown in Fig. 1(b). Figure 1(c) illustrates
results of the triangular aperture diffraction method, in which aberrations make the original 7+1
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diffraction spots at the side of the triangle almost unrecognizable. Deep learning methods
[21,22] enabled the TC determination of the beam with small aberrations by the simple hollow
intensity image (Fig. 1(d)) and conjugated vortex beam interference pattern (Fig. 1(b)).
However, large aberrations would break the doughnut-like intensity or 2I petals distribution
completely, making the TC determination difficult. That is the aberrations in the vortex beam
make traditional TC probing methods not applicable.

Meanwhile, phase recovery in a vortex beam of large aberrations is another challenge.
Different from the traditional smooth and continuous phase fronts, the phase jump boundary
naturally exists in the helical phase fronts due to the singularity. Interferometry provides an
elegant performance with the phase-shifting technique for pixel-level accurate phase
demodulation [23, 24]. However, the wrapped phase jump and the vortex phase jump are
aliased together and unable to be distinguished, which would lead to the failure of phase
unwrapping [25]. As is shown in Fig. 1(e), paths 1 and 2 in the wrapped phase provide distinct-
different solutions for the phase jump compensation from area A to B, respectively. That is the
phase unwrapping would be ambiguous due to the phase jump aliasing. Pre-designed
unwrapping paths [25] would relieve the phase jump aliasing but be inoperative in the case of
large aberrations because the complex phase jump boundaries make the pre-design of
unwrapping paths impossible.
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Fig. 1. Mutual restrain of TC determination and phase recovery in a vortex beam of aberrations,
in which (a)-(d) are the effect of aberrations on TC measurements while (e) is the effect of TC
on the aberration phase measurement. (a) bifurcations of self-interference fringes, (b)conjugated
vortex beam interference patterns, (c) triangular aperture diffraction patterns, (d) hollow
intensity image from which TC determination by deep learning, (e) the phase unwrapping
dilemma due to the phase jump aliasing in the vortex phase.

Therefore, we conclude that the aberrated phase and TC restrict each other's measurements.
Previous studies have focused on the respective measurement of the two characteristics, without
concerning the mutual restrain between the two measurements in a beam of large aberrations.
The simultaneous recovery of the aberration phase and TC number has not been reported
previously. In this paper, we propose an interactive probing method in a dual-interferometer
structure to determine the aberration phase and TC value, which separates the cross-impact
between the two parameters. A singularity-immune annular radial shearing interferometer
separates the phase unwrapping from the vortex phase jump, which makes the phase recovery
as simple as the traditional smooth phase. With the recovered aberration phase, an aberration-
immune virtual Moiréprobe is generated to determine the TC. The relationship between the
two characteristic measurements has changed from being mutually restrictive to
complementary. Simulation and experimental results proving the method effective are
presented.



2. Principle
As a kind of LG beam, the electric field of the vortex beams of aberrations can be simplified as

U =Rexp[i(I0+¢)], (1)

where R is the amplitude, | and ¢ are the TC value and phase term related to aberrations,
respectively. @ is the angular coordinate. To measure | and ¢ , the dual-interferometer
structure employed is presented in Fig. 2, which consists of a Twyman-Green interferometer
and an annular radial shearing interferometer [26].

The Twyman-Green interferometer is employed to acquire the direct interferogram of the
vortex beam and collimated beam. The polarized beam splitter (PBS 1) divides the incident
vortex beam with circular polarization into two parts. The reflected s-polarized part of the
vortex beam meets the collimated reference beam (p-polarized) at a quarter-wave plate (QWP).
The QWP transforms the two linearly polarized beams into the right-rotated circularly polarized
(RCP) and left-rotated polarized (LCP) ones, respectively. A pixeled polarizing camera (P-
camera 1) is employed to capture the interferogram. The P-camera is equipped with a pixelated
polarization mask, making four adjacent pixels have polarization directions that differ by 45<
Therefore, four spatial phase shift interferograms [23, 24] [;(i = 1,2,3,4) with n/2 phase shift

between adjacent two would be acquired simultaneously by interval pixel extraction.
I,=R* +R’ +2RR, cos| 10+p+(i—1)(7/2) ], @)

where R, is the reference beam amplitude. Due to aberrations in the vortex beam, the four
interferograms of dense even indistinguishable fringes are employed not for phase extraction
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Fig. 2. The principle of the interactive probing method.



but for eliminating the influence of background intensity. The purified interferogram
insusceptible to the background and modulation can be acquired as follows.

1, =cos(10+¢)=(1,~1 )/ (1,1, Y +(1,~1, ) ©)

®  Phase recovery with singularity isolation

The annular radial shearing interferometer is to capture the interferogram with the phase
singularity removed. The p-polarized part of the vortex beam transmitting PBS 1 is transformed
into an LCP beam again and enters into the annular radial shearing interferometer. The shearing
interferometer employs an annular beam path which makes two beams splitting from PBS 2
travel clockwise and counterclockwise, respectively. With two lenses of different focal lengths
(f. and f2) in the annular beam path, the two reverse-propagated beams have diameter
magnification factors of s and 1/s, respectively. The s= f,/ f, is the so-called shearing ratio. The
two beams eventually remeet at PBS 2, with polarized directions perpendicular to each other.
The P-camera 2 is employed to capture the shearing interferogram after the two beams travel
through a QWP. In the radial shearing interferometer, the amplitude and phase of the two beams
are respectively expressed as functions of the radius r and angular & as follows.

E(sr,H):R(rs,Q)EXP{I'[WH/’(S”'Q)}}

- 4)
E(r/s,@):R(r/s,6’)exp{i[l€+¢(r/s,0)]}
Therefore, the shearing interferogram is then written as
1, :|E(rs,6)+E(r/s,z9)|2 :A+Bcos[¢)(rs,0)—(p(r/s,6)] , (5)

where A=R(rs,0) +R(r/s,0)" and B=2R(rs,0)R(r/s,6). It can be seen from the shearing

phase ¢(rs,6)—¢(r/s,0)that the phase factor [6 of the vortex beam is canceled out in the
interference result, and only the aberration phase exists. The phase jump due to the original vortex
singularity no longer affects the phase retrieval. The shearing phase ¢(rs,6)—¢(r/s,8) can be

extracted by the phase shift interferograms captured by the P-camera 2. The radial shearing
phase recovery (RSPR) algorithm [27, 28] is used to iteratively recover the original phase

¢J(r,9) .

¢(r,¢9)=RSPR[(B(l‘S,9)—(p(l"/$,9)]. (6)

® TC determination
With the recovered phase go(r,H) , we can easily get a virtual interferogram I with the
aberration only.

I,=cos| ¢(r,0)]. ™

Then a Moiréfringes pattern is generated by the virtual interferogram in Eq. (7) and the purified
interferogram in Eq. (3) as follows



Iy =21, I ,=2cos(10+p)cos(p)=cos(16)+cos(10+2¢). (8)

It is obvious that the vortex phase (16) is separated from the aberration phase ¢ in the
Moiréfringe pattern in Eq. (8). With an optical wedge, a carrier phase ¢, can be introduced to
the incident phase ¢ . Equation (8) is thus revised as

I,=cos(10)+cos| 10+2(p+p, ) |- ©9)

The carrier phase ¢. would make the term cos[I6—2(gp+¢, )] separated from the term
cos(l@) in the frequency domain. With a Fourier transformation for the Moiréfringes pattern
I, cos(16), as the low frequencies of I, can be extracted immune to the influence of ¢ .

The outline of Cos(IH) has [ petals, being the natural pointer of TC, which are called “Moiré
probe” in this paper. This process can be expressed as follows.

Probe,,=cos(10)=IFT{T, [FT(I,,)]}. (10)

where FT and IFT refer to the operations of Fourier transformation and inverse Fourier
transformation, respectively. T means the low-pass filter.

The sign of the TC is determined by a simple digital phase shifting. With the recovered
I :cos((p), the phase shifting virtual interferogram can be calculated by

Ivzcos((p—goi), i=1,2,---, where ¢, is serials of virtual phases referring to constant matrixes

added artificially. It is a simple phase subtraction operation. Therefore, the Moiré& probe
cos(10) in Eq. (10) would be changed to cos(I6+¢,)according to Eq. (8). The new Moiré

probe cos(l6+¢, ) has the same petals with cos(18) except for the rotation of A& [29]. We
assume

cos(16+¢, ):cosl(9+A9):>A0:(p%, (11)

which implies that A@ and I have the same sign in case of positive ¢,. Therefore, the sign of
[ can be determined by the sign of A@ . The counterclockwise rotation of the Moiréprobes
would confirm the positive [ with a series of incremental positive ¢,. The clockwise rotation
refers to negative 1.

3. Simulation

Simulation examples (/=4 ) of phase recovery and TC determination by the proposed method
are presented in Visualization 1 with intermediate datas, which shows the result variations in
the cases of incident aberrations rising from 0 A to 27.7 A PV. Figures 3(a)-3(d) present three
groups of phase recovery results (three exapmles in Visualization 1) with increasing incident
aberrations in the three rows. The PV values of the incident aberration in the vortex beam in
Fig. 3(a) are OA, 13.8% and 27.7X, respectively. With the singularity elimination effect of the
shearing interferometer, the aberration phases are thus recovered with 10 A~ 102 A PV errors.
Visualization 2 illustrates the TC determination results in the cases of increasing incident
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aberrations, with the comparison to traditional methods mentioned in Sec.1. Corresponding to
the three aberration cases shown in Fig. 3(a), Figs. 3(e)-3(h) present the comparison of the TC
determination results, which refer to the Moiré probes, far-field spots, triangular aperture
diffraction spots, and conjugated interference petals, respectively. In all these results, only Moiré
probes stay at a constant Moiré probe number 4, as shown in Fig. 3(e), which shows the
aberration insensitivity of the proposed method.
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Fig. 3. Phase recovery and TC determination results with increasing incident aberrations. (a)
Incident vortex phases with aberrations, (b)Direct interferograms with the carrier, (c)Shearing
interferograms, (d) Recovered phases and recovered errors, (€) Moiréprobes, (f) Far-field spots,
(g) Triangular aperture diffraction spots, (h) Conjugated interference petals.

Figure 4 presents the performance of the method in the case of different TCs and aberration
types. The four-row images refer to the results in the case of |1|=1,5,10,20 with different

aberrations, respectively. Figure. 4(a) presents the real vortex phases with aberrations (16+¢).
Figures 4(b) and 4(c) refer to the purified interferograms I, with carrier phase and the shearing
interferograms I (s=0.8), which are captured by P-camera 1 and 2, respectively. Figure. 4(d)

shows phases ¢ recovered from the shearing interferograms I with the carrier phase removed.
The recovered smooth phase shows the immunity of the method to the phase jump of the
original vortex characteristic. The corresponding virtual interferograms I with carrier phase



are shown in Fig. 4(e). With [ +I_, the Moiréfringe patterns I, and Moiréprobes are illustrated

in Fig. 4(f) and 4(g), respectively. The Moiréprobes present accurate petals number immune
to phase aberrations. Figure 4(h) presents the recovered vortex phases, a superposition of the
recovered aberration phase and the basic helical phase. Phase recovery errors are shown in Fig.
4(i), which provides the same accuracy as the traditional shearing phase recovery.

@Real @16 )T,  ©I () Recovered @ ()1,  OIw (g M (h)Reg‘l’,eged gy Fhase

512 0.00

|

-0.33 -3.46x10°
0.00

174 -9.51x10"
27.08 0.00

639  -3.43x10°
29.22 0.00

P, N
<’

2438 -2.19x10°

Fig. 4. Simulation results of TC determination and phase recovery in the case of |i|=1,5,10,20

with different aberration types. (a) real vortex phases with aberrations, (b) the purified
interferograms with carrier phase, (c) the shearing interferograms, (d) recovered phases referring
to aberrations, (e) virtual interferograms with carrier phase, (f) Moiréfringes, (g) Moiréprobes,
() recovered vortex phase, (i) recovered phase error.

The TC sign determination is simulated in Visualization 3. According to Eq. (11), the
counterclockwise rotation of the Moiréprobes would confirm the positive | with a series of
incremental positive ¢, . Otherwise, | is negative. With serials of virtual phase ¢, =ixr/3 asthe

digital phase shifting for phase ¢, the rotations of the four Moiréprobe patterns in Fig. 4(g)

are shown in Visualization 3, with the keyframes shown in Fig. 5. We can confirm the
corresponding TC sign as /=1,-5,10,-20, respectively.
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Fig. 5. The sign detemination of TC. These pictures are the keyframes of Visualization 3
showing the obvious rotation.



We then examined the resolution of our proposed method for fractional TCs with a camera
of one megapixel. A complete probe refers to the same angular width as others while the
fractional TC would induce several incomplete probes splitting from the complete one. Figure
6 illustrates the TC estimation simulation results corresponding to 6 <I1<7.
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Fig. 6. The determination of the fractional TC with a camera of one megapixel. (a) Probes with
TC between 6 and 7 spaced 0.1 apart, (b) The GS curves which indicate the split process of

corresponding TC probes. (¢) A« and accordingly calculated I, (d) the error of TC estimation.

Figure 6(a) presents probe images with TC between 6 and 7 spaced 0.1 apart, which shows
us the new probe splitting process. It suggests the inaccuracy to determine TC only by the
number of probes. The quantitative angular width of probes or adjacent probe angular spacing
can act as the new index to describe the fractional TC. To quantify the angular width of these
petals and their septa, the grey sum curve (GS curve) of the radial pixel along the polar angle
is introduced. The angular coordinate of the GS curve is the polar angle from 0°to 360<and
the radius coordinate is the sum of normalized radial pixel gray at the corresponding polar angle.
Each peak of the GS curve refers to a radius of the maximum gray sum, which implies a petal.
Figure 6(b) presents GS curves of TC value 6~7 with 0.1 apart. Each petal splitting represents
the growth of two new petals and a new petal spacing. The growing petal spacing is narrow
than other complete ones. After a lot of simulation verification, we proposed an empirical
formula to calculate the fractional part of TC, as a correction to simple petal counting.

1=p-1+29 (12)
(94

where the p refers to the peak spacing number. & is the average angular spacing along the
polar angle. The A« is the angular spacing of the split probes, which is usually one of the
smallest angular spacing between all the peaks. Figure 6(c) presents A« and the calculated |
accordingly, with the error shown in Fig. 6(d). Specific results are listed in Tab. 1, which
provides a maximum TC error of 0.046. Therefore, a TC resolution of less than 0.1 is achieved
with a camera of one megapixel. With more pixels, a more accurate determination is available.



Table 1 Determination results of the fractional part of topological charge with a camera of one megapixel.

Reall | 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 7

Aa 4.01 10.03 17.05 22.08 28.09 33.10 38.11 4211 47.12 52.12
| 6.078 6.195 6.332 6.429 6.546 6.644 6.741 6.819 | 6.916 6.999
Error -0.022 | -0.005 | 0.032 0.029 0.046 0.044 0.041 0.019 0.016 -0.001

4. Discussion

For the Moiréprobe images, the measurable maximum TC limit depends on the pixel number
of the camera. In theory, three pixels in a circle allow two petals to be distinguished. A camera
of one megapixel has 2260 pixels counted in the outermost circle at the sensor, promising about
1130 petals counting and thus the largest measurable TC 1., =1130 . Considering the tolerance,
the largest measurable TC would be I,., =200 when expanding the resolution of two petals to
12 pixels (1.91°). The Aa/& in Eq. (12) promises the max resolution of the fraction part of TC,
which refers to a different resolution value with different & due to the TC value. With the
1=6~7, the Aa/& promises the max TC resolution of about 1.91°/(360°/7)~0.04 , which is

basically consistent with those shown in Fig. 6. According to Eq. (12), the resolution of the TC
would gradually decrease with & diminution due to the TC number increase. Figure 7(a)
presents the TC resolution variations with the increasing TC number. It shows us the TC
resolution over 1 in the case of 1~200, which illustrates the limiting ability of TC counting in
a megapixel camera. We estimate the error performance of TC determination in the case of
1=(3~4),(10~11),(20~21), with the results shown in Fig.7(b). Error bars refer to that each

determination was performed at random five different aberration levels. The three cases provide
increasing absolute values of the error as shown in Fig. 7(c), which verifies the conclusion that
the resolution decreases with the increase of measured TC number. Note that the trendline in
Fig. 7(c) is high in the middle and low on both sides, which shows the larger measurement error
of fractional TC than that of integer TC generally. It is because the positioning accuracy of
integer probes is higher than that of semi-split probes due to the fractional TC.
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Fig. 7. TC resolution analysis with a one-megapixel camera. (a) TC resolution variations with
the increasing TC number, (b) the error performance of TC determination in the cases of
1=(3~4),(10~11),(20~21) .

Another error consideration is the system structure. Just like diffraction methods for TC
determination, alignment is a must [4]. In our method, the beam wavefront singularity must be
aligned with the shearing center of the annular shearing interferometer to ensure the vortex
phase can be eliminated completely by the phase shearing. Figure 5 shows the simulation results
of misalignment. An incident phase with an exocentric singularity is shown in Fig. 8(a), which
implies the misalignment of the singularity and shearing center. The purified interferogram and



the shearing interferogram are presented in Figs. 8(b) and 8(c), respectively. The shearing
interferogram shows obvious double singularity separation due to the misalignment, which
means the phase singularity is not removed completely. Therefore, multiple phase jumps that
should not exist appear in the recovered phase ¢ as shown in Fig. 8(d), which presents the

inaccurate recovered phase. The resulting virtual interferogram in Fig. 8(e) shows the
corresponding singularity separation as well. However, the local detail does not affect the
overall low spatial frequency of Moiréfringes (Fig. 8(f)), whose profile refers to the Moiréprobe
in Fig. 8(g). Except for center deviation, these local phase recovery errors due to the
misalignment do not affect the Moir& probe number determination. Of course, the center
deviation would make the smallest probe take up fewer pixels and thus decrease the resolution.
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Fig. 8. Simulation of TC determination and phase recovery in the case of misalignment. (a)
incident vortex phases with exocentric singularity, (b) the purified interferogram, (c) the
shearing interferogram, (d) recovered phase referring to aberrations, (e) virtual interferograms,
(f) Moiréfringes, (g) Moiréprobes.

5. Experiment

We set up an experimental system to validate the proposed method as shown in Fig. 9(a). The
system is built following the two interferometer structures as shown in Fig. 2. The difference
is the incident vortex beam is generated by a reflective spatial light modulator (SLM). The
specific beam path is illustrated in Fig. 9(b). A He-Ne laser (A=632.8nm) beam was expanded
to 16mm diameter, which was reflected to an SLM by PBS 1 and BS. The SLM from
Hamamatsu Photonics was employed to modulate the collimated beam to the vortex beam of
aberrations (the green arrow). The carrier phase was provided by the SLM as well. As the
tested beam, it was then divided into two parts by BS 1. The two parts entered the Twyman-
green interferometer and annular radial shearing interferometer separately. The shearing ratio

s=f,/ f,=75mm/80mm=0.9375 . The P-camera employed is a Sony IMX250MZR CMOS
sensor with five megapixels. Each interferogram has only 1.25 megapixels before interpolation.

It implies the maximum measurable TC number is about 200, which is comparable to the
simulation.
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Fig. 9. Verification experimental setup.

The SLM provided the vortex beams of four different TC numbers (1=2,6, -10,15) with
different aberrations. Figure 10 provides the experimental results, with each row referring to
the experiment results of different TCs. The aberration phases generated by the SLM are
presented in Fig. 10(a), with 8.2A, 22X, 18\ and 15\ PV corresponding to 1=2,6, -10,15,
respectively. Such parameter allocation can help analyze the correlation between aberration
recovery accuracy and TC measurement accuracy. Direct interferograms acquired by the
Twyman-Green interferometer are presented in Fig. 10(b). These interferograms cannot
provide us with phase and TC information. The shearing interferograms and recovered phases
are shown in Fig. 10(c) and 10(d). The corresponding recovered virtual interferograms are
presented in Fig. 10(e), respectively. Note that the center of the recovered phase is removed
because of the phase noise caused by the hollow intensity distribution. The recovered virtual
interferograms are hollow as well. The Moiréfringe patterns are presented in Fig. 10(f) and
resulting Moiréprobes are shown in Fig. 10(g). Serials of digital phase shifting make the Moiré
probes rotate as shown in Fig. 10(g), which indicates three positive and one negative TC
numbers. From the GS curves presented in Fig. 10(h), the TC number measurement results can
be calculated with Eqg. (12). The specific parameters of the recovered phases and TCs are shown
in Tab. 2. Compare to real phases generated by the SLM, the relative PV error is positively
correlated with measured aberration phases. The largest relative PV error is 3.4% in the case of
the aberration of 220 PV value. This may be related to the accuracy of image aperture
determination. In contrast, the relative errors for rms value are fixed at around 0.1%, which
indicates that the phase recovery accuracy of the proposed method is not affected by TC values.
Meanwhile, TC determination errors are positively correlated with the TC number itself rather
than the aberration amount, as is shown in Tab. 2.

Table 2. Experiment results of phase recovery and TC determination.

Real | 2 6 -10 15
PV() rmms(A) PV(Q) rms(h)  PV(Y) rms(x) PV(Q) rms(})
Phase Realphase 820  1.00 2200 350 1800 280 1500 250
recovery
results Recovered 8.41 1.01 22.69 3.46 17.51 2.82 1542 251
phase
Measured | 2.024 6.061 -10.071 15.073
Measured |

Errors of | 0.024 0.061 -0.071 0.073
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Fig.10. Experiment results of TC determination and phase recovery in the case of j=2,6,10,15

with different aberrations. (a) real aberration phases, (b) the direct interferograms with carrier
phases captured by P-camera 1, (c) the shearing interferograms captured by P-camera 2, (d)
recovered phases referring to aberrations, (e) virtual interferograms, (f) Moiréfringes, (g) Moiré
probes, (h) GS curves.

Figure 11 shows the determination results of the TC number from 3.1 to 4 with 0.1 space.
Except for the probe images, the GS curves are presented as well as the calculated A« .
According to Eq. (12), the measured TC results are calculated and listed in Tab. 3. As the TC
number increases at equal intervals, the A« increases proportionally. Errors show a trend of
large in the middle and small on both sides, as the same trend in Discussion section.
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Fig. 11. Determination results of the TC number from 3.1 to 4 with 0.1 space.



Table 3. Experiment results of fractional TC determination.

Real TC 31 3.2 3.3 3.4 35 3.6 3.7 3.8 3.9 4.0
Aa 10.03  25.07 3311  40.12 51.14  60.16 68.16 7417 8428  40.11

Measured | 3.114 3.279 3.368 3.446 3.568 3.668 3.757 3.824 3936  3.999
Errors of | 0.014 0.079 0.068 0.046 0.068 0.068 0.057 0.024 0.036 0.001

6. Conclusions

Measurements of the wavefront phase and topological charge of vortex beams carrying large
aberrations are restricted by each other. We proposed an interactive probing solution with a
dual-interferometer structure. The phase singularity-immune radial shearing interferometer is
employed to recover the aberration phase. The phase recovery accuracy is the same as the
traditional shear interference phase recovery in case of alignment. With the recovered
aberration phase, the aberration-immune Moiré probe is proposed to characterize the TC
number. The TC number would go back to complement the vortex phase feature. The aberration
and TC are proven not to affect each other's measurement in this method. To achieve fine Moiré
probe counting, the GS curve is employed to calculate the TC (especially fractional TC) humber.
With a tolerance of 12 pixels per two probes, 0.01 resolution and a maximum 200 measurable
range of TC number are achievable with a camera of one megapixel. The measurement
accuracy of integer TC is higher than that of fractional TC. The beam wavefront singularity
must be aligned with the shearing center of the shearing interferometer to ensure phase recovery
accuracy. Even in the case of misalignment, the integer TC number can be determined
accurately. Experiments achieved measurement of maximum 22X aberration with 0.69A PV
error in the case of /=6 and maximum [=20 with 0.073 TC error in the case of 15X aberration.
1=3.1~4 were measured as well with about 0.1 resolution. It is of great significance to judge
the characteristics of vortex beams after passing through imperfect environments and optical
systems.
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