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Abstract: An imperfect propagation environment or optical system would introduce wavefront 

aberrations to vortex beams. The phase aberrations and orbital angular momentum in a vortex 

beam are proved to be mutually restrictive in parameter measurement. Aberrations make 

traditional topological charge (TC) probing methods ineffective while the phase singularity 

makes phase retrieval difficult due to the aliasing between the wrapped phase jump and the 

vortex phase jump. An interactive probing method is proposed to make measurements of the 

aberrated phase and orbital angular momentum in a vortex beam assist rather than hinder each 

other. The phase unwrapping is liberated from the phase singularity by an annular shearing 

interference technique while the TC value is determined by a Moiré technique immune to 

aberrations. Simulation and experimental results proving the method effective are presented. It 

is of great significance to judge the characteristics of vortex beams passing through non-ideal 

environments and optical systems. 

1. Introduction 
An optical vortex beam has a phase singularity with orbital angular momentum presenting 

helical phase fronts [1, 2]. The vortex phase term l  implies an orbital angular momentum of 

lћ with l being the topological charge (TC). The TC value and phase distribution are typically 

the most important indices to characterize a vortex beam. A lot of studies focus on measuring 

the two characteristics but are limited to those of approximately ideal beams or those with small 

aberrations. An imperfect propagation environment or optical system would introduce large 

wavefront aberrations to the vortex beam, where measurements of both phase and TC are 

challenging.  

Several methods have been developed to determine the TC of vortex beams, such as 

diffraction methods [3-8], interferometry [9-17], mode transformation [18, 19], and deep 

learning [20-22]. As the most intuitive method, interference and diffraction methods become 

mainstream procedures, which include self-interference [16, 20], conjugated beam interference 

[15], multiple-pinhole interference [9, 16], double-slit interference [10], single-slit diffraction 

[4], triangular aperture diffraction [3, 5, 8], annular aperture diffraction [12] and so on. All 

these methods depend on the judgment of subsequent regular intensity patterns, such as 

bifurcations of interference fringes [13], 2l petals of conjugated vortex beam interference [15], 

and other regular diffraction patterns [9-16]. However, these distribution regularities would be 

broken in the case of a vortex beam of large aberrations, leading to a misdiagnosis of the TC 

number. The aberration sensitivity performance of traditional TC determination examples is 

shown in Figs. 1(a)-1(d). The bifurcations of interference fringes are indiscernible in the case 

of large l  and large aberrations due to the hollow intensity distribution and indistinguishable 

interference fringes, as shown in Fig. 1(a). Figure 1(b) illustrates the 2l petals of the conjugated 

vortex beam interference pattern. With aberrations, the phase flip accompanied by the TC 

conjugation would break the regularities of petals as shown in Fig. 1(b). Figure 1(c) illustrates 

results of the triangular aperture diffraction method, in which aberrations make the original +1l  
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diffraction spots at the side of the triangle almost unrecognizable. Deep learning methods 

[21,22] enabled the TC determination of the beam with small aberrations by the simple hollow 

intensity image (Fig. 1(d)) and conjugated vortex beam interference pattern (Fig. 1(b)). 

However, large aberrations would break the doughnut-like intensity or 2l petals distribution 

completely, making the TC determination difficult. That is the aberrations in the vortex beam 

make traditional TC probing methods not applicable.  

Meanwhile, phase recovery in a vortex beam of large aberrations is another challenge. 

Different from the traditional smooth and continuous phase fronts, the phase jump boundary 

naturally exists in the helical phase fronts due to the singularity. Interferometry provides an 

elegant performance with the phase-shifting technique for pixel-level accurate phase 

demodulation [23, 24]. However, the wrapped phase jump and the vortex phase jump are 

aliased together and unable to be distinguished, which would lead to the failure of phase 

unwrapping [25]. As is shown in Fig. 1(e), paths 1 and 2 in the wrapped phase provide distinct-

different solutions for the phase jump compensation from area A to B, respectively. That is the 

phase unwrapping would be ambiguous due to the phase jump aliasing. Pre-designed 

unwrapping paths [25] would relieve the phase jump aliasing  but be inoperative in the case of 

large aberrations because the complex phase jump boundaries make the pre-design of 

unwrapping paths impossible.  

 

Fig. 1. Mutual restrain of TC determination and phase recovery in a vortex beam of aberrations, 
in which (a)-(d) are the effect of aberrations on TC measurements while (e) is the effect of TC 

on the aberration phase measurement. (a) bifurcations of self-interference fringes, (b)conjugated 

vortex beam interference patterns, (c) triangular aperture diffraction patterns, (d) hollow 
intensity image from which TC determination by deep learning, (e) the phase unwrapping 

dilemma due to the phase jump aliasing in the vortex phase. 

Therefore, we conclude that the aberrated phase and TC restrict each other's measurements. 

Previous studies have focused on the respective measurement of the two characteristics, without 

concerning the mutual restrain between the two measurements in a beam of large aberrations. 

The simultaneous recovery of the aberration phase and TC number has not been reported 

previously. In this paper, we propose an interactive probing method in a dual-interferometer 

structure to determine the aberration phase and TC value, which separates the cross-impact 

between the two parameters. A singularity-immune annular radial shearing interferometer 

separates the phase unwrapping from the vortex phase jump, which makes the phase recovery 

as simple as the traditional smooth phase. With the recovered aberration phase, an aberration-

immune virtual Moiré probe is generated to determine the TC. The relationship between the 

two characteristic measurements has changed from being mutually restrictive to 

complementary. Simulation and experimental results proving the method effective are 

presented. 



2. Principle 
As a kind of LG beam, the electric field of the vortex beams of aberrations can be simplified as  

 = +exp ( )U R i lθ φ ,                                               (1) 

where R  is the amplitude, l and φ  are the TC value and phase term related to aberrations, 

respectively.   is the angular coordinate. To measure l and φ , the dual-interferometer 

structure employed is presented in Fig. 2, which consists of a Twyman-Green interferometer 

and an annular radial shearing interferometer [26].  

The Twyman-Green interferometer is employed to acquire the direct interferogram of the 

vortex beam and collimated beam. The polarized beam splitter (PBS 1) divides the incident 

vortex beam with circular polarization into two parts. The reflected s-polarized part of the 

vortex beam meets the collimated reference beam (p-polarized) at a quarter-wave plate (QWP). 

The QWP transforms the two linearly polarized beams into the right-rotated circularly polarized 

(RCP) and left-rotated polarized (LCP) ones, respectively. A pixeled polarizing camera (P-

camera 1) is employed to capture the interferogram. The P-camera is equipped with a pixelated 

polarization mask, making four adjacent pixels have polarization directions that differ by 45°. 

Therefore, four spatial phase shift interferograms [23, 24] =( 1,2,3,4)I ii  with π/2 phase shift 

between adjacent two would be acquired simultaneously by interval pixel extraction. 

( )( )   = + + + + − cosiI R R RR l i2 2
0 02 1 2 ,                                 (2) 

where 0R  is the reference beam amplitude. Due to aberrations in the vortex beam, the four 

interferograms of dense even indistinguishable fringes are employed not for phase extraction 

 

Fig. 2. The principle of the interactive probing method. 



but for eliminating the influence of background intensity. The purified interferogram 

insusceptible to the background and modulation can be acquired as follows. 

( ) ( ) ( ) ( ) = + = − − + −cos .I l I I I I I Ip

2 2

1 3 1 3 2 4                                       (3) 

⚫ Phase recovery with singularity isolation 

The annular radial shearing interferometer is to capture the interferogram with the phase 

singularity removed. The p-polarized part of the vortex beam transmitting PBS 1 is transformed 

into an LCP beam again and enters into the annular radial shearing interferometer. The shearing 

interferometer employs an annular beam path which makes two beams splitting from PBS 2 

travel clockwise and counterclockwise, respectively. With two lenses of different focal lengths 

(f1 and f2) in the annular beam path, the two reverse-propagated beams have diameter 

magnification factors of s and 1/s, respectively. The s= f2/ f1 is the so-called shearing ratio. The 

two beams eventually remeet at PBS 2, with polarized directions perpendicular to each other. 

The P-camera 2 is employed to capture the shearing interferogram after the two beams travel 

through a QWP. In the radial shearing interferometer, the amplitude and phase of the two beams 

are respectively expressed as functions of the radius r  and angular   as follows. 

( ) ( ) ( ) 

( ) ( ) ( ) 

    

    

  = + 


 = +  

, , exp ,

, , exp ,

E sr R rs i l sr

E r s R r s i l r s
.                                       (4) 

Therefore, the shearing interferogram is then written as 

( ) ( ) ( ) ( )      = + = + − I E rs E r s A B rs r s
2

s , , cos , , ,                                (5) 

where ( ) ( ) = +
2 2

, ,A R rs R r s  and ( ) ( ) =2 , ,B R rs R r s . It can be seen from the shearing 

phase ( ) ( )   −, ,rs r s that the phase factor l  of the vortex beam is canceled out in the 

interference result, and only the aberration phase exists. The phase jump due to the original vortex 

singularity no longer affects the phase retrieval. The shearing phase ( ) ( )   −, ,rs r s can be 

extracted by the phase shift interferograms captured by the P-camera 2. The radial shearing 

phase recovery (RSPR) algorithm [27, 28] is used to iteratively recover the original phase 

( ) r , .  

( ) ( ) ( )      = − , RSPR , , .r rs r s                                               (6) 

⚫ TC determination 

With the recovered phase ( ) r , , we can easily get a virtual interferogram Iv  with the 

aberration only. 

( )  =  vI rcos , .                                                          (7)  

Then a Moiré fringes pattern is generated by the virtual interferogram in Eq. (7) and the purified 

interferogram in Eq. (3) as follows 



( ) ( ) ( ) ( )     = = + = + +M v p2 2cos cos cos cos 2I I I l l l .                           (8) 

It is obvious that the vortex phase ( l ) is separated from the aberration phase   in the 

Moiré fringe pattern in Eq. (8). With an optical wedge, a carrier phase c  can be introduced to 

the incident phase  . Equation (8) is thus revised as  

( ) ( )    = + + + M ccos cos 2 .I l l                                             (9) 

The carrier phase c would make the term ( )  − + ccos[ 2 ]l  separated from the term 

( )cos l in the frequency domain. With a Fourier transformation for the Moiré fringes pattern 

MI , ( )cos l ,  as the low frequencies of MI , can be extracted immune to the influence of  . 

The outline of ( )cos l  has l petals, being the natural pointer of TC, which are called “Moiré 

probe” in this paper. This process can be expressed as follows. 

( ) ( )   = =   L MM cos IFT T FT .Probe l I                                    (10) 

where FT and IFT refer to the operations of Fourier transformation and inverse Fourier 

transformation, respectively.  LT means the low-pass filter.   

The sign of the TC is determined by a simple digital phase shifting. With the recovered 

( )= ，cosIv  the phase shifting virtual interferogram can be calculated by 

( ) = − =，cos , ,iI iv 1 2 ， where i  is serials of virtual phases referring to constant matrixes 

added artificially. It is a simple phase subtraction operation. Therefore, the Moiré probe 

( )cos l  in Eq. (10) would be changed to ( ) +cos il according to Eq. (8). The new Moiré 

probe ( ) +cos il  has the same petals with ( )cos l  except for the rotation of   [29]. We 

assume  

( ) ( ) 
    + = +  = ，cos cos i

il l
l

                                   
(11) 

which implies that   and l  have the same sign in case of positive i . Therefore, the sign of 

l  can be determined by the sign of  . The counterclockwise rotation of the Moiré probes 

would confirm the positive l  with a series of incremental positive i . The clockwise rotation 

refers to negative l . 

 

3. Simulation 

Simulation examples ( l=4 ) of phase recovery and TC determination by the proposed method 

are presented in Visualization 1 with intermediate datas, which shows the result variations in 

the cases of incident aberrations rising from 0 λ to 27.7 λ PV. Figures 3(a)-3(d) present three 

groups of phase recovery results (three exapmles in Visualization 1) with increasing incident 

aberrations in the three rows. The PV values of the incident aberration in the vortex beam in 

Fig. 3(a) are 0λ, 13.8λ and 27.7λ, respectively. With the singularity elimination effect of the 

shearing interferometer, the aberration phases are thus recovered with 10-4 λ~ 10-3 λ PV errors. 

Visualization 2 illustrates the TC determination results in the cases of increasing incident 
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aberrations, with the comparison to traditional methods mentioned in Sec.1. Corresponding to 

the three aberration cases shown in Fig. 3(a), Figs. 3(e)-3(h) present the comparison of the TC 

determination results, which refer to the Moiré probes, far-field spots, triangular aperture 

diffraction spots, and conjugated interference petals, respectively. In all these results, only Moiré 

probes stay at a constant Moiré probe number 4, as shown in Fig. 3(e), which shows the 

aberration insensitivity of the proposed method. 

 

Fig. 3.  Phase recovery and TC determination results with increasing incident aberrations. (a) 

Incident vortex phases with aberrations, (b)Direct interferograms with the carrier, (c)Shearing 
interferograms, (d) Recovered phases and recovered errors, (e) Moiré probes, (f) Far-field spots, 

(g) Triangular aperture diffraction spots, (h) Conjugated interference petals. 

 

Figure 4 presents the performance of the method in the case of different TCs and aberration 

types. The four-row images refer to the results in the case of l =1,5,10,20  with different 

aberrations, respectively. Figure. 4(a) presents the real vortex phases with aberrations (  +l ). 

Figures 4(b) and 4(c) refer to the purified interferograms pI  with carrier phase and the shearing 

interferograms sI  (s=0.8), which are captured by P-camera 1 and 2, respectively. Figure. 4(d) 

shows phases   recovered from the shearing interferograms sI  with the carrier phase removed. 

The recovered smooth phase shows the immunity of the method to the phase jump of the 

original vortex characteristic. The corresponding virtual interferograms Iv with carrier phase 



are shown in Fig. 4(e). With v pI I , the Moiré fringe patterns MI and Moiré probes are illustrated 

in Fig. 4(f) and 4(g), respectively. The Moiré probes present accurate petals number immune 

to phase aberrations. Figure 4(h) presents the recovered vortex phases, a superposition of the 

recovered aberration phase and the basic helical phase. Phase recovery errors are shown in Fig. 

4(i), which provides the same accuracy as the traditional shearing phase recovery. 
 

 

Fig. 4. Simulation results of TC determination and phase recovery in the case of =1,5,10,20l  

with different aberration types. (a) real vortex phases with aberrations, (b) the purified 

interferograms with carrier phase, (c) the shearing interferograms, (d) recovered phases referring 
to aberrations, (e) virtual interferograms with carrier phase, (f) Moiré fringes, (g) Moiré probes, 

(f) recovered vortex phase, (i) recovered phase error.  

The TC sign determination is simulated in Visualization 3. According to Eq. (11), the 

counterclockwise rotation of the Moiré probes would confirm the positive l with a series of 

incremental positive i . Otherwise, l is negative. With serials of virtual phase  = 3i i  as the 

digital phase shifting for phase  , the rotations of the four Moiré probe patterns in Fig. 4(g) 

are shown in Visualization 3, with the keyframes shown in Fig. 5. We can confirm the 

corresponding TC sign as l= − −1, 5,10, 20 , respectively. 

 

Fig. 5. The sign detemination of TC. These pictures are the keyframes of Visualization 3 
showing the obvious rotation. 



We then examined the resolution of our proposed method for fractional TCs with a camera 

of one megapixel. A complete probe refers to the same angular width as others while the 

fractional TC would induce several incomplete probes splitting from the complete one. Figure 

6 illustrates the TC estimation simulation results corresponding to 6  l  7.  

 
Fig. 6. The determination of the fractional TC with a camera of one megapixel. (a) Probes with 

TC between 6 and 7 spaced 0.1 apart, (b) The GS curves which indicate the split process of 

corresponding TC probes. (c)  and accordingly calculated l , (d) the error of TC estimation.  

Figure 6(a) presents probe images with TC between 6 and 7 spaced 0.1 apart, which shows 

us the new probe splitting process. It suggests the inaccuracy to determine TC only by the 

number of probes. The quantitative angular width of probes or adjacent probe angular spacing 

can act as the new index to describe the fractional TC. To quantify the angular width of these 

petals and their septa, the grey sum curve (GS curve) of the radial pixel along the polar angle 

is introduced. The angular coordinate of the GS curve is the polar angle from 0° to 360° and 

the radius coordinate is the sum of normalized radial pixel gray at the corresponding polar angle. 

Each peak of the GS curve refers to a radius of the maximum gray sum, which implies a petal. 

Figure 6(b) presents GS curves of TC value 6~7 with 0.1 apart. Each petal splitting represents 

the growth of two new petals and a new petal spacing. The growing petal spacing is narrow 

than other complete ones. After a lot of simulation verification, we proposed an empirical 

formula to calculate the fractional part of TC, as a correction to simple petal counting. 






= − +1 ,l p                                                            (12) 

where the p refers to the peak spacing number.  is the average angular spacing along the 

polar angle. The  is the angular spacing of the split probes, which is usually one of the 

smallest angular spacing between all the peaks. Figure 6(c) presents  and the calculated l  

accordingly, with the error shown in Fig. 6(d). Specific results are listed in Tab. 1, which 

provides a maximum TC error of 0.046. Therefore, a TC resolution of less than 0.1 is achieved 
with a camera of one megapixel. With more pixels, a more accurate determination is available. 



Table 1 Determination results of the fractional part of topological charge with a camera of one megapixel.          

Real l 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 7 

  4.01 10.03 17.05 22.08 28.09 33.10 38.11 42.11 47.12 52.12 

l  6.078 6.195 6.332 6.429 6.546 6.644 6.741 6. 819 6.916 6.999 

Error  -0.022 -0.005 0.032 0.029 0.046 0.044 0.041 0.019 0.016 -0.001 

 

4. Discussion 
For the Moiré probe images, the measurable maximum TC limit depends on the pixel number 

of the camera. In theory, three pixels in a circle allow two petals to be distinguished. A camera 

of one megapixel has 2260 pixels counted in the outermost circle at the sensor, promising about 

1130 petals counting and thus the largest measurable TC =max 1130l . Considering the tolerance, 

the largest measurable TC would be =max 200l  when expanding the resolution of two petals to 

12 pixels (1.91°). The    in Eq. (12) promises the max resolution of the fraction part of TC, 

which refers to a different resolution value with different  due to the TC value. With the 

=6~7l , the    promises the max TC resolution of about   1.91 / 360 /7( ) 0.04 , which is 

basically consistent with those shown in Fig. 6. According to Eq. (12), the resolution of the TC 

would gradually decrease with   diminution due to the TC number increase. Figure 7(a) 

presents the TC resolution variations with the increasing TC number. It shows us the TC 

resolution over 1 in the case of  l 200 , which illustrates the limiting ability of TC counting in 

a megapixel camera. We estimate the error performance of TC determination in the case of 

( ) ( ) ( )= 3~4 , 10~11 , 20~21l , with the results shown in Fig.7(b). Error bars refer to that each 

determination was performed at random five different aberration levels. The three cases provide 

increasing absolute values of the error as shown in Fig. 7(c), which verifies the conclusion that 

the resolution decreases with the increase of measured TC number. Note that the trendline in 

Fig. 7(c) is high in the middle and low on both sides, which shows the larger measurement error 

of fractional TC than that of integer TC generally. It is because the positioning accuracy of 

integer probes is higher than that of semi-split probes due to the fractional TC. 

 

Fig. 7. TC resolution analysis with a one-megapixel camera. (a) TC resolution variations with 

the increasing TC number, (b) the error performance of TC determination in the cases of 

( ) ( ) ( )= 3~4 , 10~11 , 20~21l . 

       Another error consideration is the system structure. Just like diffraction methods for TC 

determination, alignment is a must [4]. In our method, the beam wavefront singularity must be 

aligned with the shearing center of the annular shearing interferometer to ensure the vortex 

phase can be eliminated completely by the phase shearing. Figure 5 shows the simulation results 

of misalignment. An incident phase with an exocentric singularity is shown in Fig. 8(a), which 

implies the misalignment of the singularity and shearing center. The purified interferogram and 



the shearing interferogram are presented in Figs. 8(b) and 8(c), respectively. The shearing 

interferogram shows obvious double singularity separation due to the misalignment, which 

means the phase singularity is not removed completely. Therefore, multiple phase jumps that 

should not exist appear in the recovered phase   as shown in Fig. 8(d), which presents the 

inaccurate recovered phase. The resulting virtual interferogram in Fig. 8(e) shows the 

corresponding singularity separation as well. However, the local detail does not affect the 

overall low spatial frequency of Moiré fringes (Fig. 8(f)), whose profile refers to the Moiré probe 

in Fig. 8(g). Except for center deviation, these local phase recovery errors due to the 

misalignment do not affect the Moiré probe number determination. Of course, the center 

deviation would make the smallest probe take up fewer pixels and thus decrease the resolution. 

 
Fig. 8. Simulation of TC determination and phase recovery in the case of misalignment. (a) 

incident vortex phases with exocentric singularity, (b) the purified interferogram, (c) the 
shearing interferogram, (d) recovered phase referring to aberrations, (e) virtual interferograms, 

(f) Moiré fringes, (g) Moiré probes.  

5.  Experiment 
We set up an experimental system to validate the proposed method as shown in Fig. 9(a). The 

system is built following the two interferometer structures as shown in Fig. 2.  The difference 

is the incident vortex beam is generated by a reflective spatial light modulator (SLM). The 

specific beam path is illustrated in Fig. 9(b). A He-Ne laser (λ=632.8nm) beam was expanded 

to 15mm diameter, which was reflected to an SLM by PBS 1 and BS. The SLM from 

Hamamatsu Photonics was employed to modulate the collimated beam to the vortex beam of 

aberrations (the green arrow).  The carrier phase was provided by the SLM as well. As the 

tested beam, it was then divided into two parts by BS 1. The two parts entered the Twyman-

green interferometer and annular radial shearing interferometer separately. The shearing ratio 

== =s f f2 1 75m 5  m 80mm 0/ .937 . The P-camera employed is a Sony IMX250MZR CMOS 

sensor with five megapixels. Each interferogram has only 1.25 megapixels before interpolation. 

It implies the maximum measurable TC number is about 200, which is comparable to the 

simulation.  
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Fig. 9. Verification experimental setup. 

The SLM provided the vortex beams of four different TC numbers (l=2,6, -10,15) with 

different aberrations. Figure 10 provides the experimental results, with each row referring to 

the experiment results of different TCs. The aberration phases generated by the SLM are 

presented in Fig. 10(a), with 8.2λ, 22λ, 18λ and 15λ PV corresponding to l=2,6, -10,15, 

respectively. Such parameter allocation can help analyze the correlation between aberration 

recovery accuracy and TC measurement accuracy. Direct interferograms acquired by the 

Twyman-Green interferometer are presented in Fig. 10(b). These interferograms cannot 

provide us with phase and TC information. The shearing interferograms and recovered phases 

are shown in Fig. 10(c) and 10(d). The corresponding recovered virtual interferograms are 

presented in Fig. 10(e), respectively. Note that the center of the recovered phase is removed 

because of the phase noise caused by the hollow intensity distribution. The recovered virtual 

interferograms are hollow as well. The Moiré fringe patterns are presented in Fig. 10(f) and 

resulting Moiré probes are shown in Fig. 10(g). Serials of digital phase shifting make the Moiré 

probes rotate as shown in Fig. 10(g), which indicates three positive and one negative TC 

numbers. From the GS curves presented in Fig. 10(h), the TC number measurement results can 

be calculated with Eq. (12). The specific parameters of the recovered phases and TCs are shown 

in Tab. 2. Compare to real phases generated by the SLM, the relative PV error is positively 

correlated with measured aberration phases. The largest relative PV error is 3.4% in the case of 

the aberration of 22λ PV value. This may be related to the accuracy of image aperture 

determination. In contrast, the relative errors for rms value are fixed at around 0.1%, which 

indicates that the phase recovery accuracy of the proposed method is not affected by TC values. 

Meanwhile, TC determination errors are positively correlated with the TC number itself rather 

than the aberration amount, as is shown in Tab. 2.  

Table 2. Experiment results of phase recovery and TC determination. 

Real l 2 6 -10 15 

Phase 
recovery 

results 

 PV(λ) rms(λ) PV(λ) rms(λ) PV(λ) rms(λ) PV(λ) rms(λ) 

Real phase 8.20 1.00 22.00 3.50 18.00 2.80 15.00 2.50 

Recovered 

phase 

8.41 1.01 22.69 3.46 17.51 2.82 15.42 2.51 

Measured l 
Measured l 2.024 6.061 -10.071 15.073 

Errors of l  0.024 0.061 -0.071 0.073 

 



 
Fig.10. Experiment results of TC determination and phase recovery in the case of =l 2,6,10,15

with different aberrations. (a) real aberration phases, (b) the direct interferograms with carrier 
phases captured by P-camera 1, (c) the shearing interferograms captured by P-camera 2, (d) 

recovered phases referring to aberrations, (e) virtual interferograms, (f) Moiré fringes, (g) Moiré 

probes, (h) GS curves. 

Figure 11 shows the determination results of the TC number from 3.1 to 4 with 0.1 space. 

Except for the probe images, the GS curves are presented as well as the calculated  . 

According to Eq. (12), the measured TC results are calculated and listed in Tab. 3. As the TC 

number increases at equal intervals, the   increases proportionally. Errors show a trend of 

large in the middle and small on both sides, as the same trend in Discussion section. 

 

Fig. 11. Determination results of the TC number from 3.1 to 4 with 0.1 space. 

 



Table 3. Experiment results of fractional TC determination. 

Real TC 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0 

  10.03 25.07 33.11 40.12 51.14 60.16 68.16 74.17 84.28 40.11 

Measured l 3.114 3.279 3.368 3.446 3.568 3.668 3.757 3.824 3.936 3.999 

Errors of l 0.014 0.079 0.068 0.046 0.068 0.068 0.057 0.024 0.036 0.001 

6. Conclusions 

Measurements of the wavefront phase and topological charge of vortex beams carrying large 

aberrations are restricted by each other. We proposed an interactive probing solution with a 

dual-interferometer structure. The phase singularity-immune radial shearing interferometer is 

employed to recover the aberration phase. The phase recovery accuracy is the same as the 

traditional shear interference phase recovery in case of alignment. With the recovered 

aberration phase, the aberration-immune Moiré probe is proposed to characterize the TC 

number. The TC number would go back to complement the vortex phase feature. The aberration 

and TC are proven not to affect each other's measurement in this method. To achieve fine Moiré 

probe counting, the GS curve is employed to calculate the TC (especially fractional TC) number. 

With a tolerance of 12 pixels per two probes, 0.01 resolution and a maximum 200 measurable 

range of TC number are achievable with a camera of one megapixel. The measurement 

accuracy of integer TC is higher than that of fractional TC. The beam wavefront singularity 

must be aligned with the shearing center of the shearing interferometer to ensure phase recovery 

accuracy. Even in the case of misalignment, the integer TC number can be determined 

accurately. Experiments achieved measurement of maximum 22λ aberration with 0.69λ PV 

error in the case of =6l  and maximum =20l  with 0.073 TC error in the case of 15λ aberration. 

=3.1~4l  were measured as well with about 0.1 resolution. It is of great significance to judge 

the characteristics of vortex beams after passing through imperfect environments and optical 

systems.  
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