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Abstract: Stray light suppression constitutes a vital aspect in the development of opto-

mechanical systems, but its complexity and the uncertainty surrounding scattered light 

necessitate intricate mathematical calculations and ample simulation iterations, along with 

extensive expertise and time. Consequently, researching stray light suppression in opto-

mechanical systems becomes a time-consuming and challenging endeavor. To validate the 

feasibility of using reinforcement learning for stray light suppression, this study adopts a 

model-based deep reinforcement learning approach within a Monte Carlo ray-tracing 

environment to devise suppression strategies. The experimental results demonstrate that the 

model-based deep reinforcement learning method can propose effective stray light suppression 

measures tailored to various optical system configurations, resulting in significant 

improvements in suppression efficiency. 

 

1. Introduction 

Over the past two decades, the importance of Machine Learning (ML) and Data Science in 

engineering applications and scientific research has grown dramatically due to continuous 

advancements. It has been widely used in a variety of fields from biology[1] , material 

science1[2], and astronomy[3,4] to sociology[5].In recent years, optical research has adopted 

machine learning techniques for various applications, including enhancing the performance of 

optical microscopes using deep neural networks[6], implementation of a backpropagation 

algorithm on photonic neural networks using deep learning[7], using deep learning for the 

design of photonic structures[8] from passive optimization to reverse creation of nano-optical 

designs using deep learning[9], implementing lensless computational imaging[10,11] or 

computational spectral imaging[12] with deep learning and establishing design frameworks for 

freeform imaging systems using reinforcement learning[13–15]. This shows that machine 

learning is constantly being combined with optical systems and thus promotes the development 

of optical research. 

Stray light suppression research is a crucial part of the development process of an opto-

mechanical system, which determines whether an opto-mechanical system can function 

according to its intended operating results. The presence of stray light can degrade image 

contrast and signal-to-noise ratio, and in severe cases, signals could be obliterated by stray 

light. In this paper, we try to propose a new method to solve the problem of stray light 

suppression in the opto-mechanical system through the combination of machine learning and 

optical machine system. 

The formulation of traditional non-automated stray light suppression schemes is done by the 

designer based on mathematical formulae, experience and simulation results to find a better 

stray light suppression effect through manual iteration. Lionel Clermont et al. proposed a stray 

light  control and analysis methods in an off-axis three-mirror anastigmat (TMA) telescope. 



 

The first-order scattered stray light from non-optical surfaces was controlled, and the direct 

stray light was blocked through usage of elements such as apertures and baffles, both internal 

and external to the TMA telescope[16]. Huang et al. proposed a stray light analysis method and 

some suppression principles for panoramic annular lens (PAL) byfinding stray light paths. In 

that optical system, stray light caused by light splitting on the two refractive index surfaces of 

the PAL block and then cutting them off, and the stray light suppression method of reducing 

scattering, diffraction, and other stray light will be reduced from the optical design stage[17]. 

Song et al. proposed an optimization method for the baffle design of an axial two-mirror 

telescope. The method of baffle design overcomes the shortcomings of the graphing method, 

and it can be finished simultaneously with the optical design to obtain the optimization 

configuration of the telescope[18]. Hu et al. proposed a stray light suppression aim to Cassegrain 

optical structure, which consists of a honeycomb-structured ultrashort outer baffle. The baffle 

is designed by a constraint formula based on the characteristics and the geometrical design of 

the primary and secondary baffles considering the bumps, which ensures the same stray light 

suppression as the conventional baffle while greatly reducing the size.[19] Sun et al.’s Ritchey-

Chretien optical system uses a built-in baffle, a stray light suppression measure that greatly 

reduces the length of the outer baffle while maintaining the original stray light suppression[20]. 

Similar stray light suppression is also mostly used in star tracker[21–24]. These stray light 

suppression schemes are all determined through the derivation of mathematical formulas or 

the combination of experience and simulation results, such as the position of baffles, size of 

the baffles, the baffles’ aperture and length of the light shields.  

With the constant progression in the sensitivity and threshold of photoelectric detectors, 

coupled with ongoing advancements in optical research, the demand for enhanced precision 

and threshold for stray light suppression and assessment in space optical-mechanical systems 

is on the rise. A new, more effective strategy is needed for stray light suppression that considers 

surface attributes and the entire opto-mechanical system. 

Despite Machine Learning (ML) being successfully integrated into various fields of optical 

research, the application of optical system design analysis and ML still faces challenges due to 

the intricate physical equations in optics and the random, non-linear nature of scattered light 

in ray tracing. If a suitable ML model can be used to complete the design analysis of the opto-

mechanical system, it can simplify the difficulty of the design of the opto-mechanical system 

and find a better solution by ML. 

Reinforcement learning, a subset of machine learning, is a widely employed control method in 

fields such as autonomous driving. It aims to solve the decision-making process in interactions 

between intelligent agents and their environments. The approach maximizes the cumulative 

rewards obtained from the environment by the agent until an optimal strategy to accomplish 

the set goals is found. Under the influence of reinforcement learning, the agent continuously 

interacts with the environment, learning its characteristics and leveraging neural network 

structures to optimize control strategies. When applied to stray light suppression, the agent 

iteratively interacts with the opto-mechanical structure, learns the system's stray light 

properties, and consequently, suggests appropriate suppression schemes. This process 

automates the design of stray light suppression strategies and eliminates the need for multiple 

manual iterations, thereby identifying the optimal suppression approach. Accordingly, we 

propose a model-based reinforcement learning control method capable of generating effective 

stray light suppression strategies for various opto-mechanical structures. We have designed a 

physical environment for ray tracing simulation based on the Monte Carlo method to facilitate 

interaction between the agent and the environment and generate rewards that signify the level 

of stray light suppression. 

By translating the opto-mechanical structure into a mathematical model and assigning 

respective surface properties based on the bidirectional scattering distribution function (BSDF), 



 

we can perform ray tracing according to the decisions. The point source transmittance (PST) 

acquired from the environment after the agent's decision accurately characterizes the 

effectiveness of stray light suppression. The experimental results show that the agent can 

propose an effective suppression strategy when the optical mechanical structure and stray light 

suppression requirements are known, and the environment can accurately represent the effect 

of stray light suppression. 

This method introduces a new research perspective on stray light suppression, enhances the 

efficiency of design, lowers the threshold for designing suppression strategies, and provides a 

robust initial structure for devising high-precision suppression schemes. 

2. Page layout and length 

The research principle of stray light suppression based on deep reinforcement learning is 

shown in Fig.1. The model is divided into two parts. One part is the environment that interacts 

with the agent. The environment undertakes the function of converting the decision proposed 

by the agent into an indicator of the stray light suppression effect as a reward feedback to the 

agent. The other part is the agent according to the state of the environment at this time 
tS , 

optimize the stray light suppression scheme. Under 
tS and the guidance of strategy ( )s , the 

agent selects different stray light suppression schemes as action 
ta , and interacts the scheme 

with the environment to generate new internal state and feedback of stray light suppression 

effect. Then, the agent updates the state and the reward 
tr  representing the performance index 

with 
1tS +
. 

In this chapter, we first introduce the PST of the reward source of the model and the 

formulation of the traditional stray light suppression scheme. Then we elaborate the principle 

of deep reinforcement learning (RL) composed of environment, RL agent and model, and 

finally complete the construction of the environment.  

Replay Buffer

( )1, , ,t t t ts a r s +

Actor

Eva. NN

Env. 

Parameters

Ray trace

Action turn

Mechincal struct

MCRT

ta

Critic

Target NN

1iS +

Critic

Eva. NN

Target

NN

Start

Light source 

Parameters

The intersection of 

the surfaces

Mini distance

Arrival at the exit or 

incident surface

Accumulates 

 light energy 

Yes

No

Output 

PST

End

ta
tS

tr 1tS +

（a） （b）

 

Fig. 1. (a) RL agent, (b) Environment based on Monte Carlo ray tracing 



 

2.1 Stray light analysis process  

PST often used to evaluate the effect of stray light suppression. PST refers to the ratio of the 

irradiance received by the detector to the irradiance at the entrance of the optical system at a 

specific off-axis angle. 
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( )dE  is the irradiance on the image surface when the incident angle is  , and ( )IE  is the 

irradiance on the object surface when the incident angle is  . It reflects the suppression effect 

of the optomechanical system on the stray light at a specified angle  . Although the PST 

cannot characterize the stray light suppression effect of all incident angles except the field of 

view, it can also characterize the stray light suppression effect of the optomechanical system 

at different angles through multiple measurements from multiple angles. Therefore, in this 

paper, the function curve composed of PST of multiple angles is used to characterize the stray 

light suppression effect of an optomechanical system. 

Taking the PST as the stray light analysis index, the analysis process of stray light is shown in 

the following figure Fig.2. After determining the distribution of system noise suppression 

index and the characteristics of stray light source, the basic scheme of stray light suppression 

is formulated, and the corresponding optomechanical structure design is carried out. Then, 

according to different scattering surfaces such as mirrors, coatings, etc. The surface scattering 

properties are represented by the BSDF, and the scattering database of the system is established. 

According to the scattering database, the corresponding stray light analysis model is 

established based on the surface properties of each surface and the opto-mechanical structure. 

Finally, the simulation of stray light suppression effect is carried out. In the design stage, the 

stray light suppression level of the optomechanical system is simulated to guide the 

optimization iteration of the next suppression scheme, and the suppression measures are 

improved to avoid the defects that cannot be saved and have a huge impact on the imaging 

results in the physical stage. 
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Fig. 2. The process of traditional stray light analysis and suppression 

2.2 The network and model basis of RL 

As shown in Figure 1(a), the RL model used in this paper controls the generation of stray light 

suppression schemes through the ' actor-critic ' architecture.[25] The deep reinforcement 

learning method uses a pair of neural networks, actor networks and critic networks with 

different goals. 

The actor network optimization strategy ( )s  determines the probability distribution of state-

to-action mapping. The critic 's network optimization target state-action value function 

( ),Q S a  represents the cumulative discount reward of the state-behavior to the value function 

( ),Q S a  following the current strategy ( )s . 

( ) , ~ , ~
, [ | , ]

i i it t r t S t E a t t t t
Q s a E R s a

  
=      (2) 

When the target strategy is deterministic, it is described as a function Q
. The mapping from 

action to state avoids falling into internal expectations. The optimal action value function is 

expressed according to the Bellman equation as follows : 

( ) ( ) ( )
1, ~ 1~ 1 1

, [ , [ , ]]
t tt t r s E t t at t t

Q s a E r s a E Q s a 


+ + + +

= +    (3) 

Since the reward only depends on the environment, this means that the Q value can be learned 

through different random behavior strategies. The model uses the common Q-learning off-

policy algorithm, which uses a greedy strategy ( ) ( )arg max ,as Q s a = . The algorithm uses 

the function approximator of Q  to optimize the algorithm through minimum loss. 
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The critic network iterates by using the Bellman equation. The actor network consists of three 

fully connected layers. The neurons in the input and output layers are associated with the 

dimensions of state parameters and action parameters. The neurons in the hidden layer are a 

hyperparameter. There is a rectified linear unit ( ReLU ) and a hyperbolic tangent function as 

the activation function behind the input layer and the hidden layer, respectively. 

The critic neural network, which consists of three fully connected layers. The number of 

neurons in the input layer is the sum of the dimensions of 
tS  and 

ta , and the number of 

neurons in the output layer is 1. As with actor neural networks, the number of neurons in the 

hidden layer is a hyperparameter. All layers except the last one are followed by a ReLU 

function as an activation function.  
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Fig. 3 neural network structure of RL agent. 

In the model-based RL training process proposed in this paper, each training round starts from 

a random state and ends after obtaining the corresponding reward. In the algorithm, the same 

replay buffer as the standard RL is introduced. At the beginning of training, the agent takes 

different actions according to the random strategy, and transmits the learned experience back 

to the replay buffer. We summarize the training process of the model-based deep reinforcement 

learning algorithm as algorithm 1. 
Table 1 RL algorithm 

Algorithm 1   Research model of stray light suppression based on RL 

preliminary environment 
mE  

Initialize the replay buffer 
bR  

Randomly initialize network parameters: ' ', , ,Q Q      

for episode 1  to N 

Receive the initial state 
tS  from the environment 

mE  

Initialize various parameters of stray light suppression measures ( )1  

for t 1  to M 



 

  select the action ( )|t ta s  =  

 Update the action with action noise :a t t aN a a N +  

Update stray light suppression measures ( )1 tt a +   

Calculate rewards
tr  

Get the next state from the environment 
1tS +
 

Store the experience ( )1, , ,t t t ts a r s +
 in

bR  

If 
st t  

If 
or r  

Update action noise 
aN  

End 

Randomly select minibatch of experience ( )1, , ,t t t ts a r s +
from the replay buffer. 

Compute 

 ( )( )' '

1 1' , ' | | Q

t t r t ty r Q s S    + +
 = +
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Update the critic evaluation NN by minimize 
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Update the actor evaluation NN by minimize 
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Update the target NNs by 
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end 

Updates the corrected state 
1t ts s +  

End  

End 

2.3 Ray tracing based on Monte Carlo method 

The radiative transfer equation is a multivariate integral differential equation involving 

multiple dimensions. For stray light analysis, in addition to obtaining the correct light path in 

the opto-mechanical system, it is also necessary to obtain the numerical solution of radiation. 

The Monte Carlo Ray Tracing (MCRT) method is a statistical method. The process of MCRT 

method calculating ray is to track and record the emission position, direction, and surface 

medium information of light beams with sampling significance, and then calculate the radiative 

transfer factor to obtain new information. MCRT can handle multi-dimensional complex 

geometry, anisotropic scattering, and other issues at the same time. Based on the MCRT 

method, the radiative transfer equation can be easily solved.[26,27] 

This paper adopts the path length method (PL) in the MCRT method, which tracks the forward 

route of light by judging the direction of ray, finding the minimum distance for ray to reach all 

surfaces, determining the surface that the ray reaches, and outputting the position, direction, 

surface medium, energy, and other information carried by the ray when it reaches the surface. 

Through this method, this paper realizes the non-sequential tracking of ray, in order to achieve 



 

the purpose of converting the stray light suppression scheme proposed by the intelligent agent 

into the stray light suppression index. 

When ray is irradiated on a surface with a certain roughness, due to the uneven distribution of 

the microscopic morphology of the surface, a part of the incident light is absorbed, and most 

of it undergoes scattering and reflection phenomena. In conventional MCRT tracing, the 

scattered light caused by factors such as surface roughness, scratches, pockmarks, and coatings 

is often ignored. This part of the light is the main component of the source of stray light. This 

paper applies MCRT to stray light analysis. As the main component of the source of stray light, 

scattered light must be emphasized. In the process of MCRT tracing, this paper introduces the 

BSDF that expresses the light scattering characteristics of the object surface. In the face of the 

BSDF, the measured BSDF data is usually used to accurately characterize the information of 

the surface.[28] 
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Fig. 4.  BSDF model 

Considering the statistical error and time cost of MCRT due to the need for a large number of 

rays to offset the uncertainty in the process of light propagation during MCRT simulation, this 

paper uses the ABg mathematical model to fit the surface measured BSDF data. The expression 

is shown as follows. 

( )0

0| |g
A

BRDF
B

 
 

− =
+ −

      (6) 

2.4 RL definition 

Based on the proposed model, as shown in Figure 1(a), with state
tS , action

ta , and reward
tr

defined as experience, the stray light suppression effect is transformed into an indicator that 

reinforcement learning can observe. 

The action given by the model, 
ta , is a stray light suppression measure, usually achieved by 

controlling the length of the two levels of the light shield, the number of light-blocking rings, 

the central coordinate position, and the size of the light aperture. Due to the nonlinear 

relationship between the PST at different angles and the stray light suppression measures, it is 

necessary to also use the PST as information to describe the state, so that the agent can more 

clearly understand the relationship between the PST and the stray light suppression measures. 

Therefore, the final state 
tS description is a combination of the stray light suppression 

measures proposed by the intelligent agent, the PST and the reward. The parameters included 

in its actions and states are shown in the table below. 
Table 2 actor’s parameters and observation 



 

actor’s parameters observation 

number parameters number parameters 

1 Length of external hood 1 Length of external hood 

2 Length of inner hood 2 Length of inner hood 

3 Caliber of outer baffle 3 Caliber of outer baffle 

4 Diameter of inner baffle 4 Diameter of inner baffle 

5 ring z coordinate 5 ring z coordinate 

6 ring y coordinate 6 ring y coordinate 

 7 ring light-passing 

aperture 

8 Number of blocking rings 

9 PST 

10 reward 

In order to allow the intelligent agent to choose better suppression measures and discard worse 

ones during the training process, and to consider the volume and weight issues in the design of 

the opto-mechanical structure when the PST tends to be stable, this paper defines the reward 

function as a combination of the PST at multiple angles and the evaluation of the opto-

mechanical structure parameters. The reward function is as follows: 

Agent

Generate stray light 

suppression measures

Env.

MCRT

( )
( )

( )
d

I

E
PST

E





=

Over preset 

value

No Yes

_r r PST= _ _r r PST r parameters= +

 

Fig. 5.  The definition of reward function 

When the stray light suppression effect is less than the preset indicator, it is considered that the 

current stray light suppression scheme is not good, making the reward smaller. As the number 

of episodes increases, the stray light suppression effect is greater than the preset indicator, at 

which point the stray light suppression effect gradually improves. When the stray light 

suppression effect does not change in order of magnitude, the parameters of the opto-

mechanical structure are optimized to achieve better rewards. 

3. Comparison of model training results based on different optical machine 
systems 



 

Before the commencement of the training process, this chapter switches to the appropriate 

physical environment model based on the different optical structures. Through the input of 

opto-mechanical structure parameters, the reflective optical system can function within this 

model.  

To verify the effectiveness of stray light strategies proposed through reinforcement learning, 

we utilize stray light analysis software to mimic the actual environment. By adhering to 

traditional stray light suppression analysis methods, we analyze the reflective optical system, 

obtaining the suppression effects under the traditional stray light scheme.  

We compare these results with the suppression effects of the stray light suppression strategy 

proposed by the agent and applied in the stray light analysis software to validate the practicality 

of reinforcement learning for reflective opto-machine systems in optimizing stray light 

suppression schemes. Section 3.1 demonstrates the suppression effects of the traditional stray 

light scheme in the reflective opto-mechanical system, 3.2 highlights the agent's training results, 

and 3.3 contrasts the performance of both. 

3.1 Traditional Stray Light Suppression Measures 

The example of a reflective optical system used in this paper is the Gravitational Wave Optical 

Detection Telescope. The telescope consists of two secondary surfaces, one free-form surface, 

and one planar reflector to form an off-axis four-reflector optical structure with a field of view 

of ±0.0013°. The optical structure system parameters of this gravitational wave optical 

detection telescope are shown in the table below. 
Table 3 Reflective Optical System 

surface curvature thickness material conic Zernike 4 Zernike 5 

quadratic aspherical surface 1298.5591 625.7814 Mirror -1  

quadratic aspherical surface -49.105 547.872 Mirror -1.1871 

Zernike surface Inf -92.4756 Mirror  -0.0024 -0.0497 

plane Inf 270 Mirror  

Table 4 reflective optical system 

num surface curvature thickness GLASS num surface curvature thickness GLASS 

1 sphere 66.266 2.004 SILICA 9 sphere 32.155 9.998 N-LAK33 

2 sphere 66.176 2.915 10 sphere -67.867 1.776 

3 sphere 45.299 6.017 N-LAK33 11 sphere 21.738 9.998 N-LAK33 

4 sphere 381.555 8.993 12 sphere 16.053 2.869 

5 sphere -50.574 2.001 ZF4 13 sphere 23.575 7.545 ZF4 

6 sphere -202.404 4.905 14 sphere -43.099 1.127 

7 sphere 163.695 9.997 ZF4 15 sphere -28.920 3.815 ZF4 

8 sphere 29.254 1.039 16 sphere 40.259 5 

The optical system parameters in the table are inputted into the model constructed in this paper, 

and the optical path diagram after tracing through the model is as follows, which is consistent 

with the optical path diagram shown by the optical design software. 
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Fig. 6 . Gravitational Wave Telescope Optical Detection System(a) env. (b) Optical Design 

Software(c) Star sensor optical camera env. (d) Star sensor optical camera Optical Design 

Software 

According to the automatic design of the light stop ring, the position between each light stop 

ring can be obtained. The Star sensor optical camera system is taken as an example to illustrate. 

The stray light suppression requirement of the star sensor optical camera is to ensure that the 

aperture and length are as small as possible when the light above the sun suppression angle is 

suppressed. It can be obtained that the total length of the star sensor optical camera is not more 

than 140 mm, and the aperture is not more than 120 mm. According to the stray light 

suppression index, in the case of knowing the maximum length and maximum diameter and 

the target solar suppression angle, according to the design method of the traditional baffle, we 

can get the optical machine structure of the optical camera of the star sensor. The GWOT 

optical system is also designed along the same lines, and the optical system with added stray 

light suppression measures can be obtained. 

Subsequently, the optical surfaces and mechanical structures are simulated in the stray light 

analysis software using the measured mirror and black paint properties, respectively. The 

different optical machine systems’ stray light suppression effects from various angles are 

illustrated in the following figure. 
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Fig. 7. (a)PST of Gravitational Wave Telescope Optical Detection System, GWTO is an opto-

machine system with asymmetry in the y-z plane and symmetry in the x-z plane. (b) PST of 
Star sensor optical camera, Star sensor optical camera is a rotationally symmetrical optical 

system. 

3.2 Model-based run results 

In order to solve the problem of long calculation time caused by the number of rays, the size 

of the experience pool is appropriately reduced, and the learning ratio of the actor and the 

observer is adjusted. When the learning ratio is 1e-2, although the action randomness is larger, 

it can better explore the space, but it may converge to the wrong result. When the learning ratio 

is 1e-4, the speed of action exploration is slow. In the face of continuous space of mechanical 

structure and more operands, the convergence speed is too slow. Therefore, the learning ratio 

is 1e-3 in this experiment. The hyperparameters of this model are shown in the following table. 
Table 5 hyper parameter 

number hyper parameter value 

1 Actor learning rate 0.001 

2 Critics learning rate 0.001 

3 DiscountFactor 0.98 

4 ExperienceBufferLength 5000 

5 MiniBatchSize 32 

6 SampleTime 0.5 

7 

8 

Actor GradientThreshold 

Critics GradientThreshold 

2 

2 

The outcomes of the reinforcement learning operation are displayed in the ensuing figure. In 

controlling stray light suppression measures with RL, a reward surpassing anticipated values 

indicates satisfactory stray light suppression from the current suppression measures. As the 

reward progressively stabilizes throughout training, it suggests convergence in the 

effectiveness of stray light mitigation plans proposed by the reinforcement learning. The 

relevant network structure parameters are then extracted to replicate the actor-proposed stray 

light suppression scheme. This scheme, when modeled as machine structural parameters and 

analyzed using stray light analysis software, forms the reinforcement learning's stray light 

suppression scheme for this optical system. 
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Fig. 8. Results of RL training on a different optomechanical system,(a) GWOT RL results,(b) 

Star sensor optical camera RL results 

At this time, the stray light suppression scheme proposed after the reflective optical structure 

training is shown in the figure. 

Assign the corresponding surface properties to the established optical-mechanical model and 

import it into the stray light analysis software for simulation. The stray light suppression effect 

of each angle is shown in the table below. 
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Fig. 9. (a)PST of Gravitational Wave Telescope Optical Detection System, GWTO is an opto-

machine system with asymmetry in the y-z plane and symmetry in the x-z plane. (b) PST of 
Star sensor optical camera, Star sensor optical camera is a rotationally symmetrical optical 

system. 

3.3 Comparison of stray light suppression measures between the two design 
methods 

In stray light suppression analysis, this paper simulates the stray light suppression scheme 

obtained by the model-based RL and the traditional method. According to the results of the 

simulation analysis, the different stray light suppression situations exhibited by the two 

methods under different angles are obtained. It can be seen that considering the stray light 

impact caused by scattering, the stray light suppression effect of the RL method is better than 

the traditional stray light suppression scheme. After using the RL method, the stray light 

suppression effect at each angle has been significantly improved, and it is not limited by 

different optical structures, and it shows good suppression effect in reflective optical systems. 

The suppression effects presented by the two optical systems under different suppression 

schemes are shown in the following Fig.12. The use of reinforcement learning (RL) methods 

has significantly improved the suppression effect of stray light at all angles. This method 

demonstrates effective suppression in reflective optical systems, off-axis optical systems, and 

non-spherical optical systems. 
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Fig. 7 The comparison of the traditional stray light suppression scheme and the RL stray light 

suppression scheme in different planes,(a) comparison PST of Gravitational Wave Telescope 
Optical Detection System in y-z plane,(b) comparison PST of Gravitational Wave Telescope 

Optical Detection System in x-z plane,(c) comparison PST of Star sensor optical camera 

System . 

Therefore, based on the results presented, this paper posits that model-based deep 

reinforcement learning (RL) can be effectively applied to the stray light analysis and 

suppression process in different optical systems. The RL approach, compared to traditional 

methods that primarily consider reflection factors, shows a notable superiority in stray light 

suppression. From a reinforcement learning perspective, the agent successfully identifies the 

stray light features of the different optical system through its interaction with the environment, 

thus adopting a suitable approach that enhances stray light suppression. Utilizing model-based 

deep reinforcement learning for stray light analysis in optical systems is indeed feasible. 

4. Conclusion 

In summary, this study has adopted model-based reinforcement learning to investigate the 

optimization of stray light suppression in universally applicable optical systems. To ensure the 

successful integration of stray light suppression scheme optimization with reinforcement 

learning, we utilized Monte Carlo ray tracing and ABg's BRDF model to establish an 

environment similar to the results of stray light analysis software. This environmental 

construction accelerated the episode speed of reinforcement learning, provided more direct 

feedback on stray light suppression effects, and improved network optimization efficiency. 

The agent, throughout the model training process, has learned the characteristics of stray light 

in the optical-mechanical system and proposed corresponding stray light suppression measures 

that meet the expected stray light suppression effects while minimizing the weight and volume 

of the optical-mechanical structure. In the third and fourth sections of this paper, deep 

reinforcement learning was employed to analyze off-axis four-mirror structures and 

transmissive optical structures, respectively, and corresponding stray light suppression 

schemes were proposed. The stray light suppression schemes for the two different optical 

structures both demonstrated good suppression effects, validating the applicability of the 

model-based reinforcement learning stray light suppression study designed in this paper for 

refractive and reflective optical systems; co-axial and off-axis optical systems. The research 

results of this paper indicate that reinforcement learning, as a branch of machine learning, has 

the ability to propose effective stray light suppression schemes for different optical-mechanical 

structures. This method provides a new perspective for studying stray light suppression, 

achieves automated design of stray light suppression schemes, enhances the efficiency of stray 

light suppression design, lowers the threshold for formulating stray light suppression schemes, 

and offers a good initial structure for formulating higher-precision stray light suppression 

schemes. 
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