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In situ spontaneous Raman spectroscopy at sub-millimeter detection scales has been reported previously to guide tumor 
resection. However, single-point spectroscopy is limited in its ability to sample whole surgical margins rapidly and avoid 
under-sampling. A retrospective analysis of Raman spectroscopy datasets acquired on four cancer types has shown that 
the spectral bands around 1004, 1302, 1440, and 1657 cm-1 were common cancer biomarkers. Linear SVM classification 
models were developed to detect cancer with only 3 spectral bands and showed a sensibility and specificity close to the 
one obtained with the original classification. These results led to the development of a multi-spectral imaging system that 
has the capability to map a Raman biomarker, over a >2 cm2 field-of-view. A proof-of-principle study is presented imaging 
the wavenumber band centered at 1440 cm-1 associated lipids and proteins in porcine tissues. Wide-field single-band 
imaging was achieved in ~5 seconds and preliminarily demonstrated the identification of distinct tissue regions. This 
study paves the way for the development of a new Raman imaging technique that is rapid, label-free, and wide-field.  

 

Recent advances have shown in situ single-point intraoperative 
measurements at millimeter scales can be achieved within a few 
seconds [1,2]. To date, practical intraoperative Raman 
spectroscopy applications were developed mostly using single-
point detection mode. Those included  brain tumor surgery 
guidance [3], bronchoscopy [4], colorectal endoscopy [5], skin 
lesion screening [6], breast cancer surgery [7,8], and prostate 
biopsy guidance [9]. If attainable, in vivo wide-field Raman imaging 
at macroscopic scales (centimeter-size field-of-view) could 
complement, and possibly even replace, in vivo imaging of 
fluorescence markers, including indocyanine green [10] and 
fluorescein [11]. However, achieving wide-field Raman imaging on 
par with fluorescence molecular imaging would, in principle, 
require one spectrum to be detected in every imaged pixel. This is 
simply not practical since whole Raman spectra typically comprise 
hundreds of individual spectral bins, leading to imaging times of 
several minutes even for a modest –sub-centimeter-size– field-of-

view. For example, our group developed a hyperspectral line-
scanning system that imaged adipose-muscle tissue margins in 
porcine specimens in less than 5 minutes across a 1 cm2 field-of-
view [12]. Clinical studies with that system demonstrated high 
accuracy pixelized cancer detection could be achieved in invasive 
breast carcinoma [13] within timescales of the order of 15 minutes. 
This makes these techniques –although highly sensitive and specific 
to cancer– more appropriate for ex vivo intraoperative margins 
assessment than for live surgical guidance.   
 
The prospect of detecting inelastic scattering contrast in vivo in real-
time remains enticing. However, this could only be feasible if tumor 
tissue detection did not require whole spectra to be acquired, but 
rather only a subset of Raman biomarkers. To assess the potential 
use of a subset of spectral features for cancer detection, we 
performed a retrospective analysis of four published tissue datasets 
from our group where a single-point Raman spectroscopy 
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instrument was used. One dataset was from a multicentric study 
where in vivo brain tumor Raman spectra were acquired 
(glioblastoma, meningioma, metastases) in 67 patients undergoing 
surgery (565 spectra in cancer, 420 in normal brain) [14]. The three 
other studies included spectra acquired with the same type of 
instrument albeit ex vivo in tissue specimens: 20 invasive breast 
cancer patients (87 spectra in cancer, 151 in normal breast tissue 
structures [7],  10 lung cancer patients (97 spectra in cancer, 100 in 
normal lung tissue [15], 9 patients with either ovarian or 
endometrial cancer (28 spectra in cancer, 42 in normal tissue) [16]. 
The machine learning cancer detection models published for each 
application had sensitivity/specificity of 87%/95% for brain, 
93%/95% for breast, 94%/80% for lung, and 93%/88% for 
ovarian/endometrium (Table 1). 
 
Spectra for all datasets were pre-processed, including dark noise 
correction, x-axis wavenumber calibration, y-axis calibration 
correction (instrument response function normalization), removal 
of cosmic rays and non-Raman background (e.g., endogenous tissue 
fluorescence), and Standard Normal Variate (SNV) 
normalization [17]. Based on our experience with human tissue 
Raman spectra, 7 spectral regions were selected that had both a 
clear biomolecular interpretation and contained either one or two 
visually distinguishable peaks. For each feature, a spectral band of 
width ranging from 10 cm-1 to 15 cm-1 was selected.  
 
A receiver-operating-characteristic (ROC) analysis was performed 
for each of the 7 spectral features, establishing its individual tumor 
detection potential. The sensitivity/specificity and the area-under-
the-curve (AUC) of the ROC curve were reported for the four bands 
associated with the highest performance characteristics (Table 1). 
Two bands were common to all cancer types: I) the spectral band 
centered at 1440 cm-1 that is associated with the overlapping of 
several lipids (CH2 and CH3 bend and deformation) [18] and 
proteins (C-H) [19], II) the spectral band centred at 1004 cm-1 that 
is usually assigned with phenylalanine [19]. The spectral band 
centered at 1657 cm-1, associated with lipids (C=C stretch) and 
proteins (Amid I) [18,19], was a strong biomarker for lung cancer 
and ovarian/endometrial cancer, but not for brain and breast 
cancer. The spectral band centered at 1302 cm-1, associated with 
lipids (saturated bonds CH2 and C-H vibration) as well as the amide 
III of proteins  [18–20], was an effective biomarker for brain and 
breast cancer, but not for lung and ovarian/endometrial cancer.  
 
Following the analysis based on individual Raman bands, a more 
complex support vector machines (SVM) model was trained and 
validated –for each cancer type– using only the three bands with the 
most predictive power.  This led to a sensitivity/specificity (AUC) of 
82%/91% (0.90) for brain, 92%/91% (0.96) for breast, 94%/80% 
(0.84) for lung, and 93%/85% (0.90) for ovarian/endometrium 
(Table 1). The quantitative similarity of those results with those 
already published –relying on automated spectral features 
extraction (dimensional reduction) and SVM modeling based on 
<15 features [16]– demonstrates that that there exist Raman cancer 
biomarkers common to different cancer types. This puts in sharp 
focus the fact whole spectra may not always be required when 
developing Raman-based biomedical tissue optics applications. 
However, this finding can only be of practical relevance if methods 
are developed allowing individual bands to be isolated/detected 
without the requirement for whole spectra to be acquired. No such 

technique exists and current numeric methods rely on curve fitting 
approaches to isolate low-frequency (in cm-1 space) contributions 
(i.e., fluorescence background) from the Raman signal of interest 
that is associated with higher frequency contributions [21].  
 
Table 1. Detection of four cancer types (brain, breast, lung, 
ovarian/endometrium) using spectral features associated with inelastic 
scattering spectra acquired in tissue with a single-point Raman 
spectroscopy system. The reported results are associated with ROC 
curve analyses from which the area-under-the-curve (AUC), the 
Sensitivity (Sens) and the Specificity (Spec) were computed. 

Model/ 
Features 

Brain  
Sens/Spec 

(AUC) 

Breast 
Sens/Spec 

(AUC) 

Lung 
Sens/Spec 

(AUC) 

Ovarian/ 
endometrium 

Sens/Spec 
(AUC) 

SVM (<15 
features)  

87/95 % 
(0.94) [14]  

93/95 % 
(0.98)  [7] 

94/80 % 
(0.83) [15] 

93/88 % 
(0.96) [16] 

Single band 
1440 cm-1 

86/77 % 
(0.86) 

89/70 % 
(0.82) 

90/67 % 
(0.81) 

93/46 % 
(0.50) 

Single band 
1004 cm-1 

73/87 % 
(0.86) 

82/96 % 
(0.96) 

76/50 % 
(0.60) 

78/52 % 
(0.62) 

Single band 
1657 cm-1 

- - 
95/79 % 

(0.88) 
56/93 % 

(0.85) 

Single band 
1302 cm-1 

75/72 % 
(0.77) 

83/69 % 
(0.78) 

- - 

SVM 3-bands 
82/91 % 

(0.90) 
92/91 % 

(0.96) 
94/80 % 

(0.84) 
93/85 % 

(0.90) 

 
Fig. 1. Experimental setup allowing multi-spectral detection of 
inelastic scattering in biological tissue: a) Schematic representation 
comprising epi-illumination through an excitation path formed by 
an optical fiber, a collimating lens (CL), a band-pass filter (BPF), a 
diverging lens, a dichroic mirror (DM) and a focusing lens. The light 
collection path includes a notch filter (NF), a filter wheel with 9 
interference bandpass filters, and a CCD camera. All lenses are 
spherical except LH (cylindrical with curvature in the horizontal 
direction) and LV (cylindrical lenses with curvature in the vertical 
direction); b) photograph of the system demonstrating simplicity of 
implementation.  

Here, we present –for the first time– a proof-of-principle study 
demonstrating that an epi-illumination multi-spectral imaging 
system can be used to image individual Raman bands 
macroscopically over a large field-of-view (Fig. 1). Specifically, we 
demonstrate that the inelastic scattering signal from the band 
around 1440 cm-1 can be isolated from background fluorescence 
from images acquired at only 3 wavelengths. The system comprises 
a 1.5 W wavelength-stabilized 785 nm laser (Innovative Photonic 
Solutions, NJ, USA) with < 2 nm bandwidth. The light source is 
coupled to a 1,500 m core 0.5 NA (numerical aperture) optical 



fiber. The light from the fiber passes through a beam-expander lens, 
a collimation lens, an optical density (OD) 6 bandpass filter with 
central wavelength 785 nm and 167 nm bandwidth (Semrock, NY, 
USA), a dichroic mirror, and, finally, a lens allowing to control the 
beam spot size on the specimen. Back-scattered light is collected 
through the same focusing lens and the dichroic mirror prior to 
detection through an OD 6 high-pass filter with >785 nm cut-off 
(ThorLabs, NJ, USA), a motorized filter wheel (Finger Lakes 
Instrumentation, NY, USA) that can hold up to 9 band-pass filters 
and a CCD camera (Andor IKON M, Oxford Instruments, MA, USA). 
The camera has 1024 x 1024 pixels of 13 μm width, 5 MHz pixel 
readout and it was cooled to -64°C. The filters were selected to 
ensure that the band around 1440 cm-1 could be resolved, including 
minima to the left and right of the peak. Specifically, three OD 6 
band-pass interference filters with 0.8 nm bandwidth were used 
with central wavelengths corresponding to wavenumber shifts 
(from 785 nm) of 1407, 1440 and 1492 cm-1. The 2.1 cm2 field-of-
view comprised, after 16x16 binning to decrease photonic noise, 
64x64 pixels with a spatial resolution of 225 m. 
 
Four porcine specimens were imaged that had a 1 cm thickness 
with grossly flat faces and a visually detectable margin between 
adipose and muscle tissue. Both the multi-spectral system and the 
line-scanning hyperspectral Raman system were independently 
used to acquire images of the same region-of-interest [12]. The 
hyperspectral images were considered the gold standard to be used 
as validation for the Raman biomarker images produced with the 
multi-spectral system. The hyperspectral system had a field-of-view 
of 1 cm2 with 40 x 37 pixels, a spatial resolution of 250 m and a 
spectral resolution of 6 cm-1. The tissue specimens were placed onto 
an Aluminum surface to minimize inelastic scattering background 
interference. Images were acquired over a region that showed a 
distinct margin between adipose and muscle tissue. Figure 2 shows, 
for one of the four specimens, the raw (Fig. 2a) and processed SNV-
normalized spectra (Fig. 2b) averaged over the whole image, along 
with the standard deviation for each spectral bin. The bandpass 
filters selected to be included in the wheel of the multi-spectral 
system were centered at 𝜎1= 1407 cm-1, 𝜎3 = 1492 cm-1 (minimum 
Raman activity) and 𝜎2 = 1440 cm-1. 

 

A measurement with the multi-spectral system consisted of images 
at all 3 wavenumbers σ𝑖 , i = 1, 2, 3. Each measurement was labeled 
𝐼𝑟𝑎𝑤(𝑥, 𝑦, σ𝑖), where x and y correspond to spatial coordinates on 
the specimen. The total imaging time was approximately 5 s for all 
bands. Dark noise measurements (laser turned off), labeled 
𝐵(𝑥, 𝑦, 𝜎𝑖) , were also made for each waven umber. Two other 
imaging sequences were made for calibration of the spatial and 
spectral responses of the instrument. The spatial response was 
determined using a Nylon-66 sample with high spatial uniformity 
(labeled 𝐸𝑥,𝑦(𝑥, 𝑦, σ𝑖) ), while the spectral response calibration 

utilized a NIST SRM 2214 Raman calibration standard (labeled 
𝐸𝜎(σi)), imaging at each wavenumber and computing an average 
intensity value across the image. The spectral response, 𝐸σ(σi ) , 
was then computed by dividing the resulting scalar intensity value 
at each wavenumber by the value with the NIST standard. 
 

 
Fig. 2. Adipose and muscle tissue spectra acquired with the 
hyperspectral imaging system: a) Average raw spectrum and 
variance across the images; b) Same but for processed spectra after 
background removal. The vertical dotted lines in a) correspond to 
the three spectral bands used in the multi-spectral system at 
wavenumber shifts 1407, 1440 and 1492 cm-1. Dark arrows 
indicated the spectral bands used in the 3-bands models reported in 
Table 1. 

Measurements acquired with the multi-spectral system can be 
modeled using the equation: 

   (1) 

where the quantity 

   (2) 

is the sum of inelastic scattering, 𝑅(𝑥, 𝑦, σ𝑖), and background, 
𝐷(𝑥, 𝑦, σ𝑖), that includes the endogenous tissue fluorescence. 
Isolating 𝐼(𝑥, 𝑦, σ𝑖) at each measured wavenumber was then 
achieved by normalizing the raw images by the Nylon and the 
NIST measurements.  

In Raman spectroscopy, disentangling inelastic scattering 
from other background sources relies on acquiring whole 
spectra, followed by applying a curve-fitting algorithm to 
remove low-frequency contributions  (in wavenumber 
space)  [17,22] (Fig. 2). This has the effect of isolating the 
higher frequency information associated with the molecular 
vibrational bonds. By comparison, in multi-spectral Raman 
spectroscopy, we propose to isolate inelastic scattering 
through direct subtraction of the background contributions 
measured away from the Raman band of interest. Here, this 
was achieved by applying the following formula to retrieve 
the inelastic scattering contribution at 1440 cm-1 under the 
hypothesis that the off-band Raman contributions are 
negligible at 1 = 1407 cm-1 and 3 = 1492 cm-1: 

  (3) 

Figure 3 shows the results for one tissue specimen obtained 
with both imaging systems: See Supplemental material 
(Figures S1-S3) for the other specimens. The corresponding 
white-light images for the hyperspectral system (Fig. 3a) and 
the multi-spectral system (Fig. 3b) both show the same 
adipose-muscle margin. Images are also shown representing 
the raw intensity at 1440 cm-1 for the hyperspectral (Fig. 3c) 
and multi-spectral (Fig. 3d) systems, after dark-noise 
subtraction as well as spatial and spectral calibrations. 



Fluorescence background removal was then applied to those 
images. For the hyperspectral system, this was achieved by 
applying the custom algorithm BubbleFill to every spectrum 
within the image (Fig. 3e) [17], and for the multi-spectral 
system by applying Eq. (3) (Fig 3f)). All images were 
normalized to their maximum value, with a color scale 
ranging from 0 to 1 to allow direct comparison of the 
detection contrast.  

Fig. 3 Porcine tissue specimen images showing the margin between 

adipose and muscle tissue. (a,b) White-light images acquired with the 

hyperspectral and multi-spectral imaging systems. (c,d) Corresponding 

raw Raman signal intensity images (no background subtraction) in the 

1440 cm-1 band. (e,f) Corresponding processed images following 

background removal. The two systems had a different fields-of-view but 

otherwise approximately represent the same area on the specimen. All 

images are normalized to their maximum value for direct comparison of 

the contrast associated with both modalities.    

The resulting images for all specimens showed contrast 
levels at the adipose/muscle margin for the 1440 cm-1 

biomarker that were consistent between the two imaging 
systems, demonstrating the ability of the multi-spectral 
system to isolate the inelastic scattering component 
associated with a single Raman band.  

Being able to image the 1440 cm-1 biomarker has shown great 
potential for cancer detection as it yielded, by itself, ROC 
curves with an AUC above 0.80 for brain cancer, breast 
cancer and lung cancer. Two additional spectral bands could 
easily be imaged without any change to the system since the 
filter wheel can hold up to 9 filters. This would theoretically 
allow for the use of 3-band classification model to be used for 
cancer detection consistent with the bands presented in 
Table 1. 

These results are preliminary, and more work should be done 
to demonstrate the capacity of the system to image cancer, 
however this work shows the potential for the next 
generation of Raman-based surgical guidance systems to in 
the form of rapid multi- or even single-band wide-field 
imaging. Combined with the finding of common Raman 
biomarkers of cancer, this could open the door for 
generalizable cancer imaging tools based on inelastic 
scattering. 
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