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In situ spontaneous Raman spectroscopy at sub-millimeter detection scales has been reported previously to guide tumor
resection. However, single-point spectroscopy is limited in its ability to sample whole surgical margins rapidly and avoid
under-sampling. A retrospective analysis of Raman spectroscopy datasets acquired on four cancer types has shown that
the spectral bands around 1004, 1302, 1440, and 1657 cm'! were common cancer biomarkers. Linear SVM classification
models were developed to detect cancer with only 3 spectral bands and showed a sensibility and specificity close to the
one obtained with the original classification. These results led to the development of a multi-spectral imaging system that
has the capability to map a Raman biomarker, over a >2 cm? field-of-view. A proof-of-principle study is presented imaging
the wavenumber band centered at 1440 cm! associated lipids and proteins in porcine tissues. Wide-field single-band
imaging was achieved in ~5 seconds and preliminarily demonstrated the identification of distinct tissue regions. This

study paves the way for the development of a new Raman imaging technique that is rapid, label-free, and wide-field.

Recent advances have shown in situ single-point intraoperative
measurements at millimeter scales can be achieved within a few
seconds[1,2]. To date, practical intraoperative Raman
spectroscopy applications were developed mostly using single-
point detection mode. Those included brain tumor surgery
guidance [3], bronchoscopy [4], colorectal endoscopy [5], skin
lesion screening [6], breast cancer surgery[7,8], and prostate
biopsy guidance [9]. If attainable, in vivo wide-field Raman imaging
at macroscopic scales (centimeter-size field-of-view) could
complement, and possibly even replace, in vivo imaging of
fluorescence markers, including indocyanine green[10] and
fluorescein [11]. However, achieving wide-field Raman imaging on
par with fluorescence molecular imaging would, in principle,
require one spectrum to be detected in every imaged pixel. This is
simply not practical since whole Raman spectra typically comprise
hundreds of individual spectral bins, leading to imaging times of
several minutes even for a modest -sub-centimeter-size- field-of-

view. For example, our group developed a hyperspectral line-
scanning system that imaged adipose-muscle tissue margins in
porcine specimens in less than 5 minutes across a 1 cm? field-of-
view [12]. Clinical studies with that system demonstrated high
accuracy pixelized cancer detection could be achieved in invasive
breast carcinoma [13] within timescales of the order of 15 minutes.
This makes these techniques -although highly sensitive and specific
to cancer- more appropriate for ex vivo intraoperative margins
assessment than for live surgical guidance.

The prospect of detecting inelastic scattering contrast in vivo in real-
time remains enticing. However, this could only be feasible if tumor
tissue detection did not require whole spectra to be acquired, but
rather only a subset of Raman biomarkers. To assess the potential
use of a subset of spectral features for cancer detection, we
performed a retrospective analysis of four published tissue datasets
from our group where a single-point Raman spectroscopy
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instrument was used. One dataset was from a multicentric study
where in vivo brain tumor Raman spectra were acquired
(glioblastoma, meningioma, metastases) in 67 patients undergoing
surgery (565 spectrain cancer, 420 in normal brain) [14]. The three
other studies included spectra acquired with the same type of
instrument albeit ex vivo in tissue specimens: 20 invasive breast
cancer patients (87 spectra in cancer, 151 in normal breast tissue
structures [7], 10 lung cancer patients (97 spectra in cancer, 100 in
normal lung tissue [15], 9 patients with either ovarian or
endometrial cancer (28 spectra in cancer, 42 in normal tissue) [16].
The machine learning cancer detection models published for each
application had sensitivity/specificity of 87%/95% for brain,
93%/95% for breast, 94%/80% for lung, and 93%/88% for
ovarian/endometrium (Table 1).

Spectra for all datasets were pre-processed, including dark noise
correction, x-axis wavenumber calibration, y-axis calibration
correction (instrument response function normalization), removal
of cosmicrays and non-Raman background (e.g, endogenous tissue
fluorescence), and Standard Normal Variate (SNV)
normalization [17]. Based on our experience with human tissue
Raman spectra, 7 spectral regions were selected that had both a
clear biomolecular interpretation and contained either one or two
visually distinguishable peaks. For each feature, a spectral band of
width ranging from 10 cm! to 15 cm-! was selected.

A receiver-operating-characteristic (ROC) analysis was performed
for each of the 7 spectral features, establishing its individual tumor
detection potential. The sensitivity/specificity and the area-under-
the-curve (AUC) of the ROC curve were reported for the four bands
associated with the highest performance characteristics (Table 1).
Two bands were common to all cancer types: I) the spectral band
centered at 1440 cm™ that is associated with the overlapping of
several lipids (CHz and CHs bend and deformation) [18] and
proteins (C-H) [19], II) the spectral band centred at 1004 cm that
is usually assigned with phenylalanine [19]. The spectral band
centered at 1657 cm, associated with lipids (C=C stretch) and
proteins (Amid I) [18,19], was a strong biomarker for lung cancer
and ovarian/endometrial cancer, but not for brain and breast
cancer. The spectral band centered at 1302 cm, associated with
lipids (saturated bonds CHz and C-H vibration) as well as the amide
III of proteins [18-20], was an effective biomarker for brain and
breast cancer, but not for lung and ovarian/endometrial cancer.

Following the analysis based on individual Raman bands, a more
complex support vector machines (SVM) model was trained and
validated —for each cancer type- using only the three bands with the
most predictive power. This led to a sensitivity/specificity (AUC) of
82%/91% (0.90) for brain, 92%/91% (0.96) for breast, 94%/80%
(0.84) for lung, and 93%/85% (0.90) for ovarian/endometrium
(Table 1). The quantitative similarity of those results with those
already published -relying on automated spectral features
extraction (dimensional reduction) and SVM modeling based on
<15 features [16]- demonstrates that that there exist Raman cancer
biomarkers common to different cancer types. This puts in sharp
focus the fact whole spectra may not always be required when
developing Raman-based biomedical tissue optics applications.
However, this finding can only be of practical relevance if methods
are developed allowing individual bands to be isolated/detected
without the requirement for whole spectra to be acquired. No such

technique exists and current numeric methods rely on curve fitting
approaches to isolate low-frequency (in cm™? space) contributions
(i.e, fluorescence background) from the Raman signal of interest
that is associated with higher frequency contributions [21].

Table 1. Detection of four cancer types (brain, breast, lung,
ovarian/endometrium) using spectral features associated with inelastic
scattering spectra acquired in tissue with a single-point Raman
spectroscopy system. The reported results are associated with ROC
curve analyses from which the area-under-the-curve (AUC), the
Sensitivity (Sens) and the Specificity (Spec) were computed.
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Sens/Spec  Sens/Spec  Sens/Spec
Features (AUC) (AUC) (AUC) Sens/Spec
(AUC)
SVM (<15 87/95% 93/95% 94/80 % 93/88%
features) (094)[14] (098) [7] (0.83)[15] (0.96) [16]
Single band 86/77 % 89/70% 90/67 % 93/46 %
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Fig. 1. Experimental setup allowing multi-spectral detection of
inelastic scattering in biological tissue: a) Schematic representation
comprising epi-illumination through an excitation path formed by
an optical fiber, a collimating lens (CL), a band-pass filter (BPF), a
diverging lens, a dichroic mirror (DM) and a focusing lens. The light
collection path includes a notch filter (NF), a filter wheel with 9
interference bandpass filters, and a CCD camera. All lenses are
spherical except LH (cylindrical with curvature in the horizontal
direction) and LV (cylindrical lenses with curvature in the vertical
direction); b) photograph of the system demonstrating simplicity of
implementation.

Here, we present —for the first time- a proof-of-principle study
demonstrating that an epi-illumination multi-spectral imaging
system can be used to image individual Raman bands
macroscopically over a large field-of-view (Fig. 1). Specifically, we
demonstrate that the inelastic scattering signal from the band
around 1440 cm! can be isolated from background fluorescence
from images acquired at only 3 wavelengths. The system comprises
a 1.5 W wavelength-stabilized 785 nm laser (Innovative Photonic
Solutions, NJ, USA) with < 2 nm bandwidth. The light source is
coupled to a 1,500 um core 0.5 NA (numerical aperture) optical



fiber. The light from the fiber passes through a beam-expander lens,
a collimation lens, an optical density (OD) 6 bandpass filter with
central wavelength 785 nm and 167 nm bandwidth (Semrock, NY,
USA), a dichroic mirror, and, finally, a lens allowing to control the
beam spot size on the specimen. Back-scattered light is collected
through the same focusing lens and the dichroic mirror prior to
detection through an OD 6 high-pass filter with >785 nm cut-off
(ThorLabs, NJ, USA), a motorized filter wheel (Finger Lakes
Instrumentation, NY, USA) that can hold up to 9 band-pass filters
and a CCD camera (Andor IKON M, Oxford Instruments, MA, USA).
The camera has 1024 x 1024 pixels of 13 pm width, 5 MHz pixel
readout and it was cooled to -64°C. The filters were selected to
ensure that the band around 1440 cm could be resolved, including
minima to the left and right of the peak. Specifically, three OD 6
band-pass interference filters with 0.8 nm bandwidth were used
with central wavelengths corresponding to wavenumber shifts
(from 785 nm) of 1407, 1440 and 1492 cm™. The 2.1 cm? field-of-
view comprised, after 16x16 binning to decrease photonic noise,
64x64 pixels with a spatial resolution of 225 pum.

Four porcine specimens were imaged that had a 1 cm thickness
with grossly flat faces and a visually detectable margin between
adipose and muscle tissue. Both the multi-spectral system and the
line-scanning hyperspectral Raman system were independently
used to acquire images of the same region-of-interest[12]. The
hyperspectral images were considered the gold standard to be used
as validation for the Raman biomarker images produced with the
multi-spectral system. The hyperspectral system had a field-of-view
of 1 cm? with 40 x 37 pixels, a spatial resolution of 250 pm and a
spectral resolution of 6 cm™. The tissue specimens were placed onto
an Aluminum surface to minimize inelastic scattering background
interference. Images were acquired over a region that showed a
distinct margin between adipose and muscle tissue. Figure 2 shows,
for one of the four specimens, the raw (Fig. 2a) and processed SNV-
normalized spectra (Fig. 2b) averaged over the whole image, along
with the standard deviation for each spectral bin. The bandpass
filters selected to be included in the wheel of the multi-spectral
system were centered at g, = 1407 cm, 05 = 1492 cmr! (minimum
Raman activity) and o, = 1440 cm.

A measurement with the multi-spectral system consisted of images
at all 3 wavenumbers o;, 1= 1, 2, 3. Each measurement was labeled
L-aw (X, y,0;), where x and y correspond to spatial coordinates on
the specimen. The total imaging time was approximately 5 s for all
bands. Dark noise measurements (laser turned off), labeled
B(x,y,0;), were also made for each waven umber. Two other
imaging sequences were made for calibration of the spatial and
spectral responses of the instrument. The spatial response was
determined using a Nylon-66 sample with high spatial uniformity
(labeled E,, (x,y,0;) ), while the spectral response calibration
utilized a NIST SRM 2214 Raman calibration standard (labeled
E;(0;)), imaging at each wavenumber and computing an average
intensity value across the image. The spectral response, E;(o; ),
was then computed by dividing the resulting scalar intensity value
at each wavenumber by the value with the NIST standard.

0, 67 O3

—— Muscle
—— Adipose

<= 1440

iy

3
=
8
‘

Intensity (a.u.)

800 1000 1200 1400 1600
Raman shift (cm™)

Fig. 2. Adipose and muscle tissue spectra acquired with the
hyperspectral imaging system: a) Average raw spectrum and
variance across the images; b) Same but for processed spectra after
background removal. The vertical dotted lines in a) correspond to
the three spectral bands used in the multi-spectral system at
wavenumber shifts 1407, 1440 and 1492 cm-l. Dark arrows
indicated the spectral bands used in the 3-bands models reported in
Table 1.

Measurements acquired with the multi-spectral system can be
modeled using the equation:

L (50) =E, (s (o) e
[B(X,)‘,(ir_ ) +1(.}|Z,_\‘,Ul)j|
where the quantity
l(», ¥, (7’.) = D();, ¥, 5") + R(,L‘, ¥, (7;) (2]

is the sum of inelastic scattering, R(x, y, 0;), and background,
D(x,y,0;), that includes the endogenous tissue fluorescence.
Isolating I (x, y, 0;) at each measured wavenumber was then
achieved by normalizing the raw images by the Nylon and the
NIST measurements.

In Raman spectroscopy, disentangling inelastic scattering
from other background sources relies on acquiring whole
spectra, followed by applying a curve-fitting algorithm to
remove low-frequency contributions (in wavenumber
space) [17,22] (Fig. 2). This has the effect of isolating the
higher frequency information associated with the molecular
vibrational bonds. By comparison, in multi-spectral Raman
spectroscopy, we propose to isolate inelastic scattering
through direct subtraction of the background contributions
measured away from the Raman band of interest. Here, this
was achieved by applying the following formula to retrieve
the inelastic scattering contribution at 1440 cm! under the
hypothesis that the off-band Raman contributions are
negligible at 61 = 1407 cm™ and 63 = 1492 cm1:
R(x. ¥, 1440 em™! ) = I[x, v, 1440 Cm_l) - (3)
[ f(x, v, 1492 cm ™) = i(x, y, 1407 em ™1 )] /2

Figure 3 shows the results for one tissue specimen obtained
with both imaging systems: See Supplemental material
(Figures S1-S3) for the other specimens. The corresponding
white-light images for the hyperspectral system (Fig. 3a) and
the multi-spectral system (Fig. 3b) both show the same
adipose-muscle margin. Images are also shown representing
the raw intensity at 1440 cm™ for the hyperspectral (Fig. 3c)
and multi-spectral (Fig. 3d) systems, after dark-noise
subtraction as well as spatial and spectral calibrations.



Fluorescence background removal was then applied to those
images. For the hyperspectral system, this was achieved by
applying the custom algorithm BubbleFill to every spectrum
within the image (Fig. 3e) [17], and for the multi-spectral
system by applying Eq. (3) (Fig 3f)). All images were
normalized to their maximum value, with a color scale
ranging from 0 to 1 to allow direct comparison of the
detection contrast.
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Fig. 3 Porcine tissue specimen images showing the margin between
adipose and muscle tissue. (a,b) White-light images acquired with the
hyperspectral and multi-spectral imaging systems. (c,d) Corresponding
raw Raman signal intensity images (no background subtraction) in the
1440 cm™ band. (e,f) Corresponding processed images following
background removal. The two systems had a different fields-of-view but
otherwise approximately represent the same area on the specimen. All
images are normalized to their maximum value for direct comparison of
the contrast associated with both modalities.
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Multi-Spectral
system

The resulting images for all specimens showed contrast
levels at the adipose/muscle margin for the 1440 cm?
biomarker that were consistent between the two imaging
systems, demonstrating the ability of the multi-spectral
system to isolate the inelastic scattering component
associated with a single Raman band.

Being able to image the 1440 cm-! biomarker has shown great
potential for cancer detection as it yielded, by itself, ROC
curves with an AUC above 0.80 for brain cancer, breast
cancer and lung cancer. Two additional spectral bands could
easily be imaged without any change to the system since the
filter wheel can hold up to 9 filters. This would theoretically
allow for the use of 3-band classification model to be used for
cancer detection consistent with the bands presented in
Table 1.

These results are preliminary, and more work should be done
to demonstrate the capacity of the system to image cancer,
however this work shows the potential for the next
generation of Raman-based surgical guidance systems to in
the form of rapid multi- or even single-band wide-field
imaging. Combined with the finding of common Raman
biomarkers of cancer, this could open the door for
generalizable cancer imaging tools based on inelastic
scattering.
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