SuB-20 KHz LOW FREQUENCY NOISE NEAR ULTRAVIOLET MINIATURE
EXTERNAL CAVITY LASER DIODE: SUPPLEMENTAL DOCUMENT

1. Laser diode epitaxial structure

The laser diode (LD) used in this study has a conventional GaN-based Fabry-Perot geometry.
The epitaxial structure was grown in the Laboratory of Advanced Semiconductors for
Photonics and Electronics (LASPE) of EPFL by metalorganic vapor phase epitaxy. The layer
sequence of the diode is shown in Fig. S1.

The active layer consists of two 4-nm-thick InGaN quantum wells separated by a 10-nm-thick
GaN barrier. The composition of these layers has been set to get laser emission at an
approximate wavelength of 400 nm. The surrounding AlGaN-layers ensure the vertical
confinement of the emitting light by playing the role of cladding. The AlGaN:Mg-based
electron blocking layer (EBL) is introduced to avoid an overflow of electrons on the p-type side
to compensate for the lower hole mobility.

GaN:Mg+ 500 nm
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Fig. S1 : Epitaxial structure of the laser diode.

2. Simulation of Fiber Bragg grating transmission

Requirements

To obtain a single-mode optical feedback on the laser diode, the Bragg wavelength of the fiber
Bragg grating (FBG) has to be centered at the emission wavelength of the bare laser diode,
which occurs around 400 nm. Then, the full width at half-maximum (FWHM) of the filter must
be narrower than the free spectral range (FSR) of the diode cavity (26 pm) in order to lock the
emission onto a unique mode. Finally, the maximum reflection of the FBG has to be sufficiently
high to obtain the desired optical feedback. Here, the reflectivity coefficient (R) has been fixed
at ~50% as it is a good compromise between the strength of the optical feedback and the
available outcoupled power.



For a uniform grating, the reflection coefficient is given by [1]:
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The Bragg propagation constant is fo = /1—:716 rf and the coupling coefficient is expressed by k
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= where Ap is the Bragg resonance wavelength, ness is the effective optical index and

An is the amplitude of the effective index modulation imprinted during the Bragg
photoinscription in the fiber. The Bragg wavelength also defines the grating period A following
Ap =2 *Nepp * A

The condition of resonance is reached for 4 = Ap, which is equivalent to A = 0. It implies
that 7 = — itanh(kL), Rpmax = 7% = tanh?(kL) and the transmission coefficient is given by T
=1-—R.

To simulate the theoretical response of a uniform fiber Bragg grating, only some parameters
are required like the Bragg wavelength, the effective index ness of the modes in the grating,
the index modulation An and the length of the grating L. The fiber properties determine the
mean effective index, but the other parameters are linked to the fabrication of the component.
From these data we can calculate k, B, ¥ and finally Rand T .

Index modulation and Bragg wavelength settings

The reflection bandwidth (FWHM) mainly depends on the length of the FBG. The longer the
grating, the narrower it is. The amplitude of the index modulation affects the bandwidth to a
lesser extent. In practice, when the grating is too long, a phase noise is introduced in the index
modulation during the inscription, which will subsequently limit the minimal achievable
bandwidth. The Bragg wavelength is determined by the effective index of the mode and the
period of the grating. This period corresponds to the pitch of the interference field projected
onto the fiber and is a function of the mutual angle between the two interfering writing beams
of the Talbot interferometer.

Parameters impact on the performances

If the peak reflectivity of the FBG is set, the FWHM of the filter can be simulated for any
length. The coupling coefficient is then used as an adjustment variable. One can find below
in Fig. S2 the spectral transmission of the grating for three different lengths. The parameters
used for the simulation are:

o nerr=1.47348.
e An = 12x10"%(L=1mm), 0.6 x 10~* (L = 2 mm), 0.4 x 10~% (L =3 mm)
e A=135.61nm
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Fig. S2 : Simulated FBG transmission spectra for three different lengths. Simulation parameters are the following ones:
L=1mm /An=1.2 x 10~ (black curve), L=2mm / An=0.6 x 10 (red curve) and L=3mm / An=0.4 x 10 (blue curve).

Final design

From the different simulations and the optical fiber properties, the length fulfilling the filtering
requirements is 3 mm. A comparative graph between the optimum simulated result and the
experiment is shown in Fig. S3.

We can then deduce:

o Ap=2-ng s A=399.64nm

mAn
e K=——=2322m™!
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Riax = tanh?(kL) = 0.558 = 55.8%
FWHM = 20 pm
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Fig. S3 : FBG transmission measurement (blue curve) and corresponding simulated spectrum
(orange curve). The measured reflection is close to the simulated one. Simulation parameters are
the following ones: FBG length = 3 mm, index modulation A7 = 0.40 x 10,

3. Output power versus side mode suppression ratio

Thanks to the simultaneous measurements of the optical power and the optical spectrum, the
optimum tradeoff between power and side-mode suppression ratio (SMSR) can be determined.
Fig. S4 displays the evolution of the optical power versus pump current with a saw tooth
behavior that is common for such external cavity laser diode [2]. SMSR evolution versus pump
current is also plotted. The SMSR shows an opposite slope sign compared with the optical
power. Indeed, at the beginning of sequence 1 (see Fig. S4), the Bragg wavelength and the LD
optical mode are overlapping each other leading to an optimum filtering effect. This results in
a lower optical output power but an optimized SMSR. On the contrary, at the end of sequence
1, a poor wavelength overlap between the Bragg wavelength and the redshifted LD mode
implies a degraded filtering effect, which leads to a larger output power at the expense of a
reduced SMSR. The results shown in the main text are obtained for a pump current of 124 mA.
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Fig. S4 : Output optical power and SMSR of the fiber Bragg grating laser (FGL) as a function
of driving current

4. Retrieving the optical spectrum from frequency noise measurements

The objective of this appendix is to provide some insights into the link between the power
spectral density (PSD) of the laser frequency noise Sgy(f) and the optical spectrum Ig(v). A
more detailed explanation can be found in Refs. [3]-[6]. Let us consider the laser field E(t) for
which only phase fluctuations are taken into account:

E(t) — Eoei(Z”V0t+¢(t)),

where t is the time, Eg is the amplitude of the laser field, Vo is the field mean frequency and
¢(t) is the time-dependent phase. The optical spectrum Ig(Vv) is the Fourier transform of the
temporal autocorrelation of the laser field Rg(7):

00
Ig(v) = f Rp(1)e~2mvidr, #(2)
For a Gaussian noise ¢(t), Rg(t) can be written as:
Rp(t) =<E"()E(t +1) >,

or in an expanded form:
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The link between < [¢(t + T) — d(t)]?> > and the temporal correlation of the frequency
noise Rgy(T) is not trivial but a complete explanation can be found in Ref. [3]:

<[pt+1)—d)]?=2 f;(t — ) Rsy (T)dt. #(4)

The main outcome of this treatment is to keep in mind that the temporal correlation of the
frequency noise R, (7) is linked to the laser noise PSD Sy (f), where f is the Fourier
frequency, by the Wiener—Khintchine theorem:

Rsy(¥) = [} Ssv(f) cos(2mft) df #(5)
Combining equations (4) and (5) leads to:
<[pt+1)— O =22 ;" Ssu(f) [ (t — ) cos(2mft) dtdf, #(6)

which allows to recast the expression of the temporal autocorrelation of the laser field in the
following form:

Rg(r) = E§ei2™oTexp [ -2 sgv(f)sinig# df]. #(7)

Finally, from Eq. (1), the relation between the PSD of the laser noise and the optical spectrum
Ig(V) can be described by the following relation, called the Elliott Formula [3]:
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Ig(v) = E2 f_ e_iZ”"TeiZ"VOTexp[—Z fo ng(f)walf] dv. #(8)

From white frequency noise to Lorentzian profile

Considering a laser frequency noise (FN) only determined by spontaneous emission noise, then
the FN is described by a white noise PSD Ssv(f) = ho (see Fig. S5 a)). Then the Elliott formula
expressed by Eq. (8) reduces to:

Ig(v) = E%f_woo el2nt(Vo—v) o—m?ho T dr,

which can be recast into a Lorentzian function:

_ 2 ho
TeW) = EdGrg 232 + o — vy

with a linewidth Av,,, = hy.



As an illustration, for the white noise of our UV FGL shown in Fig. S5, we have hg = 4149 Hz?2
/Hz, the Lorentzian function is depicted by the yellow dashed line in Fig. S5.

a) 10 b)
- Integated noise
E 1084 ,\10- i Theoritical Lorentzian
~ ) il
T 1071 Z 081 i
= 3 | |
o
£10% 506/ I
= Py |

105+ ° !
9 2041 i
2 10 ?El fER

\

o 0.24 /
L% 10%4 < b, ‘\

107 . ; ; 1Y DS = B .= S

102 10° 10* 105 108 -100 -50 0 50 100
Frequency (Hz) Frequency (kHz)

Fig. S5 : a) PSD of a frequency white noise /1, = 4149 Hz*/Hz. b) Comparison between the
integrated white noise deduced from the Elliott formula (green curve) and the analytical
expression (yellow dashed line).
We can also perform a numerical integration of the white noise hg using Eq. (7) between 100
Hz and 1 MHz and see that the numerical integration overlaps well with the theoretical curve.

From flicker frequency noise to Gaussian profile

The case of a flicker noise ( Ssv(f) = h1/f) is not as straightforward as for the white noise,
and gives the following form for the optical spectrum:

Ig(v) = E§ f_+;° eTi2MVTei2mvoT exp | —2hg fooo —Sinzgf D df| dr.

The problem faced is that the integral fom%df is not convergent. To circumvent this

issue, and hence obtain a physically relevant result, we take advantage of the fact that the
observation time is not infinite. Defining an appropriate observation time, and thus a lower
bound to the frequency integration, leads to a Gaussian profile for the integrated optical
spectrum [4]:

Ip(w) = EfZe=(0oe)’/o",

with w the angular frequency, o the mean angular frequency of the laser and 62 = 3.56h.

Relation between frequency noise and optical spectrum

In the present experimental case, our FGL does exhibit a more complex noise PSD, so that no
analytical formulas are applicable. However, we can perform a numeral integration on the
measurement frequency bandwidth of Eq. (7). The resulting curve is plotted in Fig. S6. From
this curve, the integrated laser linewidth can be extracted: Av =720+ 120 kHz. For



comparison, the Beta line method [5] can also be used to assess the linewidth of the laser, and
a similar value of 710 + 120 kHz is obtained.
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Fig. S6 : a) PSD of the frequency noise of the UV FGL. b) Integrated frequency noise deduced
from the Elliott formula leading to a linewidth of 720 kHz.
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