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Abstract: Snapshot compressive imaging of high-dimensional data is indispensable for11

numerous areas of study. Despite the remarkable advances in either spectral or temporal12

approaches separately, optically compressing a spectral video in a single snapshot remains13

challenging. In this article, we report a novel compressive spectral video scheme that offers14

a dynamic color-coded wavelength coding plus a windowing approach to handle the temporal15

dimension. The proposed compressive coding scheme is implemented by synchronizing a tunable16

bandpass filter and a coded aperture device to code and acquire the spectral video within a fixed17

exposure time. Special attention is given to the design and evaluation of the dynamic coded18

apertures using binary masks. We develop and implement a plug-and-play alternating-direction19

method of multiplier to efficiently recover the four-dimensional datacubes. We demonstrate the20

ability of the proposed approach to capture and reconstruct spectral video information in both21

spectral classification and motion tracking applications.22

© 2023 Optica Publishing Group23

1. Introduction24

Spectral video imaging (SVI) aims to record a four-dimensional (4D) data cube (𝑥, 𝑦, 𝜆, 𝑡),25

which contains the intensity information about each spatial-temporal location (𝑥, 𝑦, 𝑡) at each26

wavelength 𝜆. SVI contains information about the time evolution of morphological and spectral27

features of the scenes that, combined with the mathematical model-based algorithms, sparked28

the development of high-level applications, e.g., detection and classification applications [1–8].29

However, the capture of high-resolution SVI demands high acquisition times, storage, and data30

transfer rate requirements, which increase as the 4D data cube resolution grows, limiting its31

widespread usage.32

Compressive spectral video imaging (CSVI) relies on using compressive sensing theory [9]33

to drive novel optical designs able to acquire massive high-dimensional datacubes in a single34

snapshot. In particular, CSVI arises as an alternative to acquiring SVIs in high-dynamic scenarios35

without relying on high-storage capacities and scan-based sensing protocols. A CSVI pathfinder36

work is the coded aperture snapshot spectral imager (CASSI) [10], which aims to reduce the37

acquisition complexity by optically encoding the SVI’s in spatial-spectral dimensions. The38

CASSI architecture performs a spatial encoding with a spectral sweep in a frame-by-frame39

fashion, without temporal compression. CASSI-based CSVI approaches can be classified into40

three main categories: hardware design [11, 12], encoding optimization [13], and computational41

algorithms [11,12, 14, 15]. From the hardware side, few approaches have focused on extending42

the compression to include the temporal dimension, often focusing on extending the functionality43

of compressive spectral imagers to record a compressive measurement per frame. To improve44

the spatial-temporal reconstruction accuracy, the optical system in [11] incorporates a beam45



splitter for dividing and relaying the scene’s wavefront into a CASSI system (spectral dimension)46

and a high-frame-rate panchromatic camera (temporal dimension). Nonetheless, these side-47

information-based systems require further efforts related to the optical setup calibration process48

and the development of reconstruction/fusion algorithms. In [12], the optical system uses a49

LED-based active illumination source for spectral modulation; however, active illumination50

strategies can lead to bulkier imaging systems, besides presenting calibration robustness issues.51

The second approach focuses on optimizing the CSVI’s encoding optical elements to guarantee52

that the sensing matrix satisfies one or several inverse properties, e.g., the restricted isometry53

property (RIP) [16], the Gershgorin circles [17], or the conditional numbers [18]. An optical54

optimization method for designing colored-coded apertures (CCA) is based on a relaxation of the55

RIP metric [13], which results in CCAs with uniform sensing in the four dimensions. On the other56

hand, computational CSVI algorithms were proposed in [14,15], exploiting the convolutional57

sparse coding theory. Recently, computational methods based on deep learning (DL) have gained58

high popularity in spectral imaging reconstruction tasks. The synergistic combination of DL with59

spectral optical architectures allowed the computational imaging community to introduce new60

optical systems by designing the underlying coded elements in a data-driven approach [19–22].61

Specifically, the two main drawbacks of the DL-based CSVI approaches are the inaccessibility62

to public SV databases and the elevated computational resources required for training. Despite63

the progress in multidimensional compression [23], most of the latest research has focused on64

CSVI optical architectures that avoid performing temporal compression to circumvent the high65

computational complexity and often poor reconstruction results.66

To overcome these limitations, we propose a new snapshot compressive spectral video67

codification approach. It provides spectral and temporal compression using a dynamic spectral68

and temporal windowing encoding method, synchronizing a tunable spectral filter with a DMD69

to achieve spectral dynamic CCAs. Experiments consider a coded aperture design based on a70

temporal windowed approach to improve the reconstruction performance. For CSV reconstruction,71

we develop a novel hierarchical-based methodology based on the plug-and-play alternating72

direction method of multipliers (PnP-ADMM) approach. The proposed method is tested on73

spectral classification and object detection problems, demonstrating its ability to compressively74

capture and recover key information from spectral video scenes without requiring capturing the75

entire datacube beforehand.76

2. Methodology77

2.1. Continuous sensing model78

The proposed spectro-temporal modulation strategy can be implemented with a liquid crystal79

tunable bandpass filter (LCTF), followed by a DMD, located in the focal image plane, sequentially80

accommodated and separated by a relay lens, as can be seen in Fig. 1. The first step is to define81

the propagation model in continuous notation to develop the discrete version and reconstruction82

models.83

Let 𝑓0 (𝑥, 𝑦, 𝜆, 𝑡) be the spatial-spectral-temporal object, where (𝑥, 𝑦) indexes the spatial
coordinates, 𝜆 indexes the wavelength, and 𝑡 indexes the temporal dimension. An objective lens
transmits the source density to the input plane of a 4 𝑓 system composed of two relay lenses with
an LCTF to spectral filter the incident light. In the 4f system’s output plane, a DMD synced with
the LCTF is located to dynamically modulate each spectral datacube following a 3D color-coded
aperture strategy [24]. The resulting wavefront after the first DMD can be expressed as

𝑓1 (𝑢, 𝑣, 𝜆, 𝑡) = 𝜅1 (𝑢, 𝑣, 𝜆, 𝑡)
∬

𝛾(𝜆) 𝑓0 (𝑥, 𝑦, 𝜆, 𝑡)ℎ1 (𝑥 − 𝑢, 𝑦 − 𝑣, 𝑡)𝑑𝑥𝑑𝑦, (1)



Fig. 1. Sketch of the optical system, which is composed of two spectral and temporal
modulation elements LCTF and DMD. Here, the LCTF and the DMD are synced, i.e.,
they share the same switching speed.

with

𝜅(𝑢, 𝑣, 𝜆, 𝑡) =
∑︁

𝑖𝑢 ,𝑖𝑣 ,𝑖𝜆 ,𝑖𝑡

𝐶𝑖𝑢 ,𝑖𝑣 ,𝑖𝜆 ,𝑖𝑡 · rect
(
𝑢

Δ𝑐
− 𝑖𝑢,

𝑣

Δ𝑐
− 𝑖𝑣 ,

𝜆

Δ𝜆
− 𝑖𝜆,

𝑡

Δ𝑡
− 𝑖𝑡

)
, (2)

where ℎ1 (·) is the intensity point-spread-function (PSF) introduced by the 4f system with84

the LCTF located in the middle, rect(·) represents a rectangle function, 𝛾(·) represents the85

spectral source density, C ∈ R𝑁𝑥×𝑁𝑦×𝑁𝜆×𝑁𝑡 is the binary coding applied to the (𝑖𝑢, 𝑖𝑣 , 𝑖𝜆, 𝑖𝑡 )-th86

voxel with 𝐶𝑖𝑥 ,𝑖𝑦 ,𝑖𝜆 ,𝑖𝑡 ∈ {0, 1}, and 𝜅(𝑢, 𝑣, 𝜆, 𝑡) represents the continuous version of the mask87

pattern [referred to as DMD in Fig. 1]. Here, 𝑖𝑥 ∈ {0, ..., 𝑁𝑥 − 1}, 𝑖𝑦 ∈ {0, ..., 𝑁𝑦 − 1},88

𝑖𝜆 ∈ {0, ..., 𝑁𝜆 − 1}, and 𝑖𝑡 ∈ {0, ..., 𝑁𝑡 − 1}, where 𝑁𝑢 and 𝑁𝑣 represent the spatial resolution89

of the mask, 𝑁𝜆 represents the LCTF’s total of reachable spectral steps and 𝑁𝑡 is the number of90

frames. Finally, Δ𝑐 represents the coded aperture pixel size, Δ𝜆 is the LCTF’s spectral resolution,91

and Δ𝑡 represents the temporal resolution related to the switching speed of the LCTF and the92

DMD elements. The resulting filtered and coded wavefront is propagated and focused into a93

detector array. The wavefront field immediately before the detector can be expressed as94

𝑓2 (𝑥′, 𝑦′, 𝜆, 𝑡) =
∬

𝑓2 (𝑢′, 𝑣′, 𝜆, 𝑡)ℎ2 (𝑢′ − 𝑥′, 𝑣′ − 𝑦′)𝑑𝑢′𝑑𝑣′, (3)

where ℎ2 (·) represents the intensity PSF for the L3 lens. Finally, the measurement at the
(𝑖𝑥′ , 𝑖𝑦′ )-th pixel is represented by

𝐺𝑖𝑥′ ,𝑖𝑦′ =

∫
Γ

∫
Λ

𝜌(𝜆)
∬

𝑓2 (𝑥′, 𝑦′, 𝜆, 𝑡) · rect
(
𝑥′

Δ𝑑
− 𝑖𝑥′ ,

𝑦′

Δ𝑑
− 𝑖𝑦′

)
𝑑𝑥′𝑑𝑦′𝑑𝜆𝑑𝑡, (4)

where Λ represents the wavelength axis over the spectral range, Γ represents the time axis over95

the temporal range, 𝜌(𝜆) represents the system’s normalized quantum efficiency, Δ𝑑 is the size96

of the camera pixel.97

2.2. Discrete sensing model98

The proposed spectrally dynamic and spatial-temporal windowed codification approach can be99

schematically represented by Fig. 2.100

Imaged by a front optics onto the image plane of a 4f system with a bandpass filter in the middle,101

the data acquisition starts by filtering the spectral dynamic scene denoted by F ∈ R𝑁𝑥×𝑁𝑦×𝑁𝜆×𝑁𝑡 ,102

where 𝑁𝑥 and 𝑁𝑦 represent the data lengths in the two spatial dimensions, 𝑁𝜆 and 𝑁𝑡 represents103



the data length in the spectral and temporal dimension, respectively. Then, the filtered dynamic104

scene is imaged into a binary reflective DMD, where the reflected light is spatially encoded105

(denoted by C ∈ R𝑁𝑥×𝑁𝑦×𝑁𝜆×𝑁𝑡 ). Note the DMD’s pattern changes with each change of the106

tunable filter, which repeats its cycle 𝑁𝑡 -times. Finally, the resulting spectral and filtered spectral107

dynamic scene is integrated by the sensor, producing the compressively recorded 2D snapshot108

G =

[
𝑁𝑡−1∑︁
𝑖𝑡=0

𝑁𝜆−1∑︁
𝑖𝜆=0

F:,:,𝑖𝜆 ,𝑖𝑡 � C:,:,𝑖𝜆 ,𝑖𝑡

]
+ E, (5)

where G ∈ R𝑁𝑥×𝑁𝑦 is the compressed measurements, � represents the element-wise product109

operation, and E ∈ R𝑁𝑥×𝑁𝑦 represents the additive noise.110

2.3. Temporal windowing approach111

The mask pattern (C), a crucial element in SCI approaches, is designed using a pixel-wise112

Bernoulli random variable with a transmittance of 𝑡𝑐 ≈ 0.5. The spectral depth of the proposed113

codification approach is limited by the bandpass filter wavelengths; the temporal resolution114

[i.e., 𝑁𝜆]. The proposed system yields a compression ratio of 𝑁𝜆𝑁𝑡 . Several works have115

demonstrated that the compression ratio is highly related to the reconstruction accuracy of CSVI116

systems [25,26]. Some works have studied the mask pattern design to improve the reconstruction117

quality without sacrificing the systems’ compression power. However, these designs are limited118

to three-dimensional scenarios, e.g., compressive spectral or temporal imaging. Inspired by the119

macro pixel structure approaches and spectral filter arrays, we propose a temporal-macro pixel120

structure (named windowing strategy) that allows an optimal distribution of the information121

across the sensor by avoiding large clusters of temporal and spectral information per pixel. In122

particular, this structure decreases the number of information encoded into each pixel at the123

expense of the spatial resolution. Introducing the temporal windowing encoding strategy in Eq.124

(5), we obtain the following model125

G𝑖𝑤 =

[
𝑆−1∑︁
𝑖𝑡=0

𝑁𝜆−1∑︁
𝑖𝜆=0

P𝑖𝑤
(
F:,:,𝑖𝜆 , (𝑖𝑡+𝑖𝑤𝑆) � C:,:,𝑖𝜆 ,𝑖𝑡

) ]
+ E𝑖𝑤 , (6)

Objective 
lens

L1
Tunable

bandpass filter L2
Digital

micromirror 
device

L3 CCDScene Temporal windowing

Fig. 2. Illustration of the proposed optical coding methodology with a window size
of 𝑊 = 2, number of frames 𝑁𝑡 = 16, and temporal interval per pixel of 𝑆 = 4. The
optical system performs the modulation of the coded aperture C by the syncing of the
LCTF and DMD. Post-acquisition, the temporal windowing operator 𝑃𝑖𝑤 separates the
data into corresponding G𝑖𝑤 measurements.



where P𝑖𝑤 (·) : R𝑁𝑥×𝑁𝑦 → R
𝑁𝑥
𝑊

× 𝑁𝑦

𝑊 is a subsampling operator [27] with 𝑖𝑤 ∈ {0, ...,𝑊2 − 1},126

each 𝑖𝑤 measurement contains the information of a temporal interval of size 𝑆 = 𝑁𝑡/𝑊2 ∈ N, with127

𝑊 ∈ N are the windowing size, the total of information per pixel in the compressed measurement128

is relaxed from
(
1 − 𝑊2

𝑁𝜆𝑁𝑡

)
to

(
1 − 1

𝑁𝜆𝑁𝑡

)
. Following the temporal macro pixel structure, Eq.129

(6) can be decoupled into𝑊2 linear sensing subproblems as130

g𝑖𝑤 = H𝑖𝑤 f𝑖𝑤 + 𝝐 𝑖𝑤 , (7)

where g𝑖𝑤 ∈ R𝑚 represents the compressed measurements related to the temporal interval131

(𝑆 · 𝑖𝑤)-th frame to 𝑆 · (𝑖𝑤 + 1)-th frame with 𝑚 =
𝑁𝑥𝑁𝑦

𝑊2 ; f𝑖𝑤 ∈ R𝑛 represents the vectorial132

version of the 𝑖𝑤-th temporal fragment with 𝑛 = 𝑁𝑥𝑁𝑦𝑁𝜆𝑆; 𝝐 𝑖𝑤 ∈ R𝑚 is the additive noise for133

the 𝑖𝑤-th measurement. The structure of H𝑖𝑤 ∈ R𝑚×𝑛 relates to the accommodation of the coding134

elements of the system. In particular, its entries are given by135

(𝐻𝑖𝑤 )𝑖, 𝑗 =
{
(𝑐𝑖𝑤 ) 𝑗 , if 𝑖 = mod( 𝑗 , 𝑚)
0, otherwise

, (8)

for 𝑖 ∈ {0, ..., 𝑚 − 1} and 𝑗 ∈ {0, ..., 𝑛 − 1}, where (𝑐𝑖𝑤 ) 𝑗 are the entries of c𝑖𝑤 ∈ R𝑛, the136

vectorized version of C𝑖𝑤 = P𝑖𝑤 (C), and mod(·) : R → W represents the modulus operator.137

Additionally, as was explored previously in the state-of-the-art [28–30], to reconstruct high138

dimensional data, the reconstruction of multiple dimensions could be relaxed by dividing it139

into substeps. Here, we first reconstruct a grayscale temporal video of the scene, subsequently,140

the grayscale estimation is used to reconstruct the SV. To achieve this, the proposed sensing141

methodology defines the coded aperture C by merging a 4D random mask A ∈ R𝑁𝑥×𝑁𝑦×𝑁𝜆×𝑁𝑡142

with a 3D random mask B ∈ R𝑁𝑥×𝑁𝑦×𝑁𝑡 to encode the temporal domain using an independent143

mask, which can be represented mathematically as
(
C𝑖𝑤

)
:,:,𝑖𝜆 ,𝑖𝑡 = A:,:,𝑖𝜆 ,𝑖𝑡 � B:,:,𝑖𝑡 . The144

reconstruction performance depends on the transmittance 𝑡𝑐 of C defined as,145

𝑡𝑐 =
1
𝑛

𝑁𝑡−1∑︁
𝑖𝑡=0

𝑁𝜆−1∑︁
𝑖𝜆=0

𝑁𝑥−1∑︁
𝑖𝑥=0

𝑁𝑦−1∑︁
𝑖𝑦=0

C𝑖𝑥 𝑖𝑦 𝑖𝜆𝑖𝑡 . (9)

Note that 𝑡𝑐 = 𝑡𝑎 · 𝑡𝑏, where 𝑡𝑎 ∈ [0, 1] and 𝑡𝑏 ∈ [0, 1] correspond to the transmittance of A and146

B, respectively. The optimal values of 𝑡𝑎 and 𝑡𝑏 could be explored to improve the reconstruction147

performance. Figure 3 illustrates an example of this coding structure in the spectral-temporal148

dimension composed by the spectral response of the bandpass filter and the codification terms for149

any spatial pixel.150

Imposing the property of 1
𝑁𝜆

∑𝑁𝜆−1
𝑖𝜆=0 A:,:,𝑖𝜆 ,: = 1, and the measurement g𝑖𝑤 from Eq. (7) is151

possible to formulate a inverse problem to a grayscale version z𝑖𝑤 of the SV f𝑖𝑤 as,152

g𝑖𝑤 = H𝑖𝑤D𝑇z𝑖𝑤 , (10)

where z𝑖𝑤 ∈ R𝑁𝑥𝑁𝑦𝑆 is a grayscale video representation of the 𝑖𝑤-th spectral-video segment with153

z𝑖𝑤 = Df𝑖𝑤 and D = I𝑆×𝑆 ⊗
[
1𝑇𝑁𝜆

⊗ I 𝑁𝑥𝑁𝑦

𝑊2 × 𝑁𝑥𝑁𝑦

𝑊2

]
is a spectral downsampling matrix, with ⊗154

denoting the Kronecker product.155

2.4. Hierarchical-based optimization problem156

High-dimensional reconstruction algorithms based on hierarchical methodologies aim to decouple157

a high-complexity optimization problem into a set of low-complexity subproblems. We build a158

spectral video reconstruction from the proposed temporal windowing sensing methodology by159



splitting the high-dimensional optimization problem into𝑊2 low-complexity problems. Based160

on the PnP-ADMM framework [31], the optimization problem can be modeled as161

arg min
f𝑖𝑤 ,𝜽𝑖𝑤

‖g𝑖𝑤 − H𝑖𝑤 f𝑖𝑤 ‖2
2 +

𝜇

2
‖𝜽 𝑖𝑤 + 𝜼𝑖𝑤 − f𝑖𝑤 ‖2

2 + 𝜙(𝜽 𝑖𝑤 ), (11)

where 𝜇 > 0 is a regularization parameter, 𝜽 𝑖𝑤 ∈ R𝑛 is an auxiliary parameter, 𝜙(·) : R𝑛 → R is
a prior function that plays the role of an arbitrary regularizer, and 𝜼𝑖𝑤 ∈ R𝑛 is the scaled dual
variable. To improve the reconstruction performance, the optimization problem in Eq. (11)
is initialized with a pre-recovered grayscale video version z𝑖𝑤 of the scene directly from the
measurement g𝑖𝑤 . This approach is inspired by image processing methods that have demonstrated
that the initial estimations can speed up convergence and avoid local minima [28–30]. Similarly
to Eq. (11), the optimization problem to estimate z𝑖𝑤 can be written as

arg min
z𝑖𝑤 ,𝝎𝑖𝑤

‖g𝑖𝑤 − H𝑖𝑤D𝑇z𝑖𝑤 ‖2
2 +

𝜇𝑧

2
‖𝝃𝑖𝑤 + z𝑖𝑤 − 𝝎𝑖𝑤 ‖2

2 + 𝜆𝑧𝜙(𝝎𝑖𝑤 ), (12)

where 𝜇𝑧 > 0 is the weighting of the augmented lagrangian term, 𝝃𝑖𝑤 ∈ R𝑁𝑥𝑁𝑦𝑆 is the dual162

variable, 𝝎𝑖𝑤 ∈ R𝑁𝑥𝑁𝑦𝑆 is an auxiliary variable with 𝝎𝑖𝑤 = z𝑖𝑤 , and 𝜙(·) : R𝑁𝑥𝑁𝑦𝑆 → R is a163

prior restriction function for which their structure does not need to be defined in PnP-ADMM164

approaches. Since the proposed sensing methodology allows recovering in parallel the SV in𝑊2
165

low-complexity problems, the proposed hierarchical-based approach reduces the computational166

cost from O(𝑊6𝑛3) to O(𝑛3). The PnP-ADMM procedure is summarized in Algorithm 1. In line167

2, the variables z(0)
𝑖𝑤

, 𝝎 (0)
𝑖𝑤

, and 𝝃 (0)
𝑖𝑤

are initialized as all-zeros vectors. The PnP-ADMM iterations168

for the grayscale approximation are computed in lines 4, 5, and 6, where L𝜇𝑧 (·) corresponds to169

the cost function stated in Eq. (12). In line 8, the variables f (0)
𝑖𝑤

, 𝜽 (0)
𝑖𝑤

, and 𝜼 (0)
𝑖𝑤

are initialized by170

using the calculated variables in the first loop. Then, the PnP-ADMM iterations for the spectral171

video are evaluated in lines 10, 11, and 12 here, L𝜇 is the cost function defined in Eq. (11).172

Finally, the recovered video f𝑖𝑤 is returned in line 14.173

3. Results174

The proposed CSV methodology is validated via simulations using a dataset of eleven spectral175

videos. In particular, the first ten videos were created using the RGB-to-spectral mapping176

network [32] over ten selected videos of the Need for Speed dataset [33]. Then, after a177

resized/cropping step, the resulting spectral videos have a spatial resolution of𝑁𝑥×𝑁𝑦 = 720×720,178

a spectral resolution of 𝑁𝜆 = 8, and a temporal resolution of 𝑁𝑡 = 32. The eleventh spectral179

Fig. 3. Illustration of the proposed coding structure for an arbitrary spatial position
(𝑖𝑥 , 𝑖𝑦) at the detector in a spectral video with 𝑁𝜆 = 6 spectral bands and 𝑁𝑡 = 3
frames.



Algorithm 1 PnP-ADMM spectral video recovery
1: Input: Acquired data {g𝑖𝑤 ,H𝑖𝑤 }, and maximum number of iterations 𝑇1 and 𝑇2

2: Initialize: z(0)
𝑖𝑤

= 0, 𝝎 (0)
𝑖𝑤

= 0 and 𝝃 (0)
𝑖𝑤

= 0
3: for 𝑡 = 1 : 𝑇1 − 1 do
4: z(𝑡+1)

𝑖𝑤
:= arg min

z𝑖𝑤
L𝜇𝑧

(
z𝑖𝑤 ,𝝎

(𝑡 )
𝑖𝑤
, 𝝃 (𝑡 )
𝑖𝑤

)
⊲ Grayscale video

5: 𝝎 (𝑡+1)
𝑖𝑤

:= arg min
𝝎𝑖𝑤

L𝜇𝑧

(
z(𝑡+1)
𝑖𝑤

,𝝎𝑖𝑤 , 𝝃
(𝑡 )
𝑖𝑤

)
⊲ Denoising step

6: 𝝃 (𝑡+1)
𝑖𝑤

:= 𝝃 (𝑡 )
𝑖𝑤

+ z(𝑡+1)
𝑖𝑤

− 𝝎 (𝑡+1)
𝑖𝑤

⊲ Dual update
7: end for
8: Initialize: f (0)

𝑖𝑤
= D𝑇z(𝑇 )

𝑖𝑤
, 𝜽 (0)
𝑖𝑤

= D𝑇𝝎 (𝑇 )
𝑖𝑤

and 𝜼 (0)
𝑖𝑤

= 0
9: for 𝑡 = 1 : 𝑇2 − 1 do

10: f (𝑡+1)
𝑖𝑤

:= arg min
f𝑖𝑤

L𝜇

(
f𝑖𝑤 , 𝜽

(𝑡 )
𝑖𝑤
, 𝜼 (𝑡 )
𝑖𝑤

)
⊲ Spectral video

11: 𝜽 (𝑡+1)
𝑖𝑤

:= arg min
𝜽𝑖𝑤

L𝜇

(
f (𝑡+1)
𝑖𝑤

, 𝜽 𝑖𝑤 , 𝜼
(𝑡 )
𝑖𝑤

)
⊲ Denoising step

12: 𝜼 (𝑡+1)
𝑖𝑤

:= 𝜼 (𝑡+1)
𝑖𝑤

+ 𝜽 (𝑡 )
𝑖𝑤

− f (𝑡+1)
𝑖𝑤

⊲ Dual update
13: end for
14: Return: Recovered video f𝑖𝑤

video was recorded using a monochromator light source, a motorized linear stage, and a camera180

sensor [34]. The resulting video was cropped to have the same dimension as the other synthetic181

spectral videos. The sensing matrix is constructed following Eq. (8). Note that C is generated182

from {A,B}, and its resulting transmittance 𝑡𝑐 can be calculated as 𝑡𝑐 = 𝑡𝑎 · 𝑡𝑏. These two183

parameters have important repercussions on the reconstruction performance; thus, these are184

studied in detail in the following sections. All simulations were conducted using an Intel Xeon185

ES-2697 2.6 GHz processor with 192 GB RAM memory.186

3.1. Reconstruction performance varying 𝑡𝑎, 𝑡𝑏, and 𝑊187

We conducted comprehensive studies on how the transmittance of each coded aperture and the188

window size would affect the reconstruction performance. For this analysis, the parameters were189

set as {𝑡𝑎, 𝑡𝑏} ∈ {0.25, 0.5, 0.75}, and𝑊 ∈ {1, 2, 3, 4, 5}. Reconstruction results are summarized190

in Figure 4 in terms of the peak signal-to-noise ratio (PSNR), structural similarity index metric191

(SSIM), spectral angle mapper (SAM), and the customized general perceptual error metric192

(GPEM, details are summarized in Appendix 4.1). For each of the used metrics, the overall193

best configuration for𝑊, 𝑡𝑎, and 𝑡𝑏 is shown in a continuous green square, and the specific best194

pair of 𝑡𝑎, and 𝑡𝑏 is shown with a dotted orange square. These results show that the optimal195

reconstruction performance, according to the GPEM, in the proposed methodology is achieved196

when 𝑡𝑎 = 0.75, 𝑡𝑏 = 0.25, and𝑊 = 3. Conversely and based on GPEM, the worst scenario is197

presented when 𝑡𝑎 = 0.25, 𝑡𝑏 = 0.25, and𝑊 = 1. In summary, the results show that the spatial198

reconstruction performance tends to improve for high transmittance values (i.e., 𝑡𝑎 → 0.75) in199

the first and second masks A,B. Conversely, the spectral reconstruction performance tends to200

improve for high transmittance values in A (i.e., 𝑡𝑎 → 0.75) and low transmittance values in B201

(i.e., 𝑡𝑏 → 0.25)202

To further compare the image quality, a representative reconstructed result of the "Kid" and203

"Campesina" scenes (with 𝑡𝑎 = 0.75 and 𝑡𝑏 = 0.25) are shown in Fig.5. In particular, for each204

scene, a selected frame of the GT is compared with their corresponding frames reconstructed205

using five different values of window sizes. The full movie is shown in Video S1. These206

reconstructions echo Fig. 4, which supports the positive impact of alleviating the compression207



per pixel via the windowing methodology.208

3.2. Spatio-temporal reconstruction validation209

To demonstrate the ability to acquire/estimate the spatial features in the time courses from210

measurements acquired with the time windowed strategy, see Fig. 6. In particular, we211

reconstructed a spectral video of a billiard with two moving balls, with their centroids and212

circumferences being calculated at every frame, as shown in Fig. 6. This analysis is performed for213

the two windowing scenarios,𝑊 = 1 (worse) and𝑊 = 3 (optimal), and by setting their optimal214

pair of 𝑡𝑎, 𝑡𝑏 (green squares in Fig. 4). In Fig. 6, the first row illustrated the circumference215

prediction for the GT movie. The second and third row shows the reconstruction results, of216

five equidistant frames, obtained with 𝑊 = 1 and 𝑊 = 3, respectively. Figure 6 shows that217

without the temporal windowing (i.e.,𝑊 = 1) methodology, the reconstruction fails to accurately218

recover the spatial-temporal details, which can be noticed in the detection failure of the billiard219

balls. In contrast, using the temporal windowing methodology (i.e.,𝑊 = 3), accurately recovers220

each billiard ball’s size, shape, and position in the entire sequence, which can be noticed in the221

successful detection. To quantitatively analyze reconstruction, the centroids of all two balls were222

traced, as seen in Fig. 6 (a). The relative errors of each centroid along the temporal courses223

in the reconstruction with and without temporal windowing are presented in Fig. 6 (b). The224
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Fig. 5. Visual analysis of the reconstruction of the spectral videos Kid and Campesina
using a transmittance of {𝑡𝑎 = 0.75, 𝑡𝑏 = 0.25} and varying𝑊 ∈ {1, 2, 3, 4, 5}.

quantitative results show that using temporal windowing produces a higher reconstructed image225

accuracy than without using the windowing methodology.226

3.3. Spectral validation227

To demonstrate the ability to accurately recover the spectral features, we performed spectral228

classification of the billard video using a spectral K-means algorithm set up for seven spectral229

groups [35]. Figure 7 reports the quantitative and qualitative results of this validation, which230

is performed for the frames {1, 9, 17, 25, 32} of the GT video (first row), and the reconstructed231

videos using a temporal windowing of𝑊 = 1 (second row) and𝑊 = 3 (third row). The colors232

in the segmentation maps show seven representative classes in the scene, comparing with the233

ground truth SV in Fig. 6 it is possible to relate them to the white and red pool balls, the fabric,234

and wood of the pool table, and the cue stick, In particular, the classification results attained using235

𝑊 = 3 are 24% and 10% higher in terms of the Accuracy and F1-Score metrics, respectively,236

than those obtained with𝑊 = 1.237

Finally, to further validate the spectral reconstruction accuracy, Fig. 8 illustrates the first238

four eigenvectors estimated from the spectral covariance matrices for the same spectral frames239

analyzed in Figs 6-7. In particular, the superiority of the temporal windowing methodology can240

be appreciated in the estimation of the fourth eigenvector, where the results show an average241

SAM of 4.18◦ for𝑊 = 3 and 13.06◦ for𝑊 = 1. These results echo the classification performance242

presented in Fig. 7. Thus, the temporal windowing methodology leads to a relaxation of the243

reconstruction problem, which contributes to better rendered image quality.244



Fig. 6. Results of circle detection experiment over reconstructed billard spectral video
using𝑊 = 1 and𝑊 = 3, for each pool ball in the scene is calculated the relative error
of the predicted centroids.

4. Conclusions245

In this article, we propose a CSVI modulation scheme using a dynamic color-coded aperture246

and windowing approach for wavelength and temporal dimensions, respectively. The encoded247

spectral and temporal information is acquired within a single image snapshot, where the coded248

aperture is defined as the multiplication of two independent masks. The proposed coded aperture249

structure independently modulates the temporal-spectral dimensions, and the proposed windowing250

approach reduces the compression level, allowing the formulation of a hierarchical reconstruction251

method, and resulting in the relaxation of the inverse problem. The results suggested that the252

best spatial-temporal-spectral reconstruction is achieved using a window size 𝑊 = 3, and the253

combination of 𝑡𝑎 = 0.75 and 𝑡𝑏 = 0.25 transmittance for the masks A and B. Notice that a254

high number of window sizes𝑊 increases the temporal resolution while the spatial resolution255

decreases, then, 𝑊 = 3 represents a fair trade-off between the spatial and temporal resolution.256

Furthermore, according to the GPEM, the temporal-spectral recovery performance improves for257

𝑡𝑎 and 𝑡𝑏 with high and low values, respectively. The proposed methodology was also compared258
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in both spectral classification and object detection applications. Results demonstrated superior259

performance for capturing and recovering key information from compressed spectral video scenes260

compared to traditional CSV schemes.261

Appendix262

4.1. General Perceptual Error Metric (GPEM)263

Although PSNR, SSIM, and SAM metrics quantify the reconstruction errors, in this work the264

performance of each metric depends on the scene. Then, a general perceptual error metric265

(GPEM) is proposed. Similar to [36], the optimal configurations are different for each metric,266

then, to find the optimal configuration, the GPEM corresponds to a dimensionless normalized267

linear combination of PSNR, SSIM, and SAM.268

Φ̃3 =

2∑︁
𝑘=0

𝛼𝑘Φ̃𝑘 , (13)

where,
∑2
𝑘=0 𝛼𝑘 = 1 and Φ̂𝑘 ∈ R𝐾1×𝐾2×𝐾3 corresponds to the matrix arranging normalized the269

values of the k-th metrics (PSNR, SSIM, and SAM) for 𝐾1 videos, 𝐾2 window sizes, and 𝐾3270

combinations of transmittances 𝑡𝑎 and 𝑡𝑏. For the metrics where the greater the better, such271

as PSNR and SSIM, the normalized metric is defined as Φ̂𝑘 =
Φ𝑘−min(Φ𝑘 )

max(Φ𝑘 )−min(Φ𝑘 ) . But for the272

SAM metric, the lower the better Φ̂𝑘 = 1 − Φ𝑘−𝑚𝑖𝑛(Φ𝑘 )
max(Φ𝑘 )−min(Φ𝑘 ) . Where max(·) and min(·) are the273

maximal and minimal values of each matrix.274
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