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Abstract:  Snapshot compressive imaging of high-dimensional data is indispensable for
numerous areas of study. Despite the remarkable advances in either spectral or temporal
approaches separately, optically compressing a spectral video in a single snapshot remains
challenging. In this article, we report a novel compressive spectral video scheme that offers
a dynamic color-coded wavelength coding plus a windowing approach to handle the temporal
dimension. The proposed compressive coding scheme is implemented by synchronizing a tunable
bandpass filter and a coded aperture device to code and acquire the spectral video within a fixed
exposure time. Special attention is given to the design and evaluation of the dynamic coded
apertures using binary masks. We develop and implement a plug-and-play alternating-direction
method of multiplier to efficiently recover the four-dimensional datacubes. We demonstrate the
ability of the proposed approach to capture and reconstruct spectral video information in both
spectral classification and motion tracking applications.

© 2023 Optica Publishing Group

1. Introduction

Spectral video imaging (SVI) aims to record a four-dimensional (4D) data cube (x,y,4,1),
which contains the intensity information about each spatial-temporal location (x, y,t) at each
wavelength A. SVI contains information about the time evolution of morphological and spectral
features of the scenes that, combined with the mathematical model-based algorithms, sparked
the development of high-level applications, e.g., detection and classification applications [1-8].
However, the capture of high-resolution SVI demands high acquisition times, storage, and data
transfer rate requirements, which increase as the 4D data cube resolution grows, limiting its
widespread usage.

Compressive spectral video imaging (CSVI) relies on using compressive sensing theory [9]
to drive novel optical designs able to acquire massive high-dimensional datacubes in a single
snapshot. In particular, CSVI arises as an alternative to acquiring SVIs in high-dynamic scenarios
without relying on high-storage capacities and scan-based sensing protocols. A CSVI pathfinder
work is the coded aperture snapshot spectral imager (CASSI) [10], which aims to reduce the
acquisition complexity by optically encoding the SVI’s in spatial-spectral dimensions. The
CASSI architecture performs a spatial encoding with a spectral sweep in a frame-by-frame
fashion, without temporal compression. CASSI-based CSVI approaches can be classified into
three main categories: hardware design [11, 12], encoding optimization [13], and computational
algorithms [11, 12, 14, 15]. From the hardware side, few approaches have focused on extending
the compression to include the temporal dimension, often focusing on extending the functionality
of compressive spectral imagers to record a compressive measurement per frame. To improve
the spatial-temporal reconstruction accuracy, the optical system in [11] incorporates a beam
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splitter for dividing and relaying the scene’s wavefront into a CASSI system (spectral dimension)
and a high-frame-rate panchromatic camera (temporal dimension). Nonetheless, these side-
information-based systems require further efforts related to the optical setup calibration process
and the development of reconstruction/fusion algorithms. In [12], the optical system uses a
LED-based active illumination source for spectral modulation; however, active illumination
strategies can lead to bulkier imaging systems, besides presenting calibration robustness issues.
The second approach focuses on optimizing the CSVI’s encoding optical elements to guarantee
that the sensing matrix satisfies one or several inverse properties, e.g., the restricted isometry
property (RIP) [16], the Gershgorin circles [17], or the conditional numbers [18]. An optical
optimization method for designing colored-coded apertures (CCA) is based on a relaxation of the
RIP metric [13], which results in CCAs with uniform sensing in the four dimensions. On the other
hand, computational CSVI algorithms were proposed in [14, 15], exploiting the convolutional
sparse coding theory. Recently, computational methods based on deep learning (DL) have gained
high popularity in spectral imaging reconstruction tasks. The synergistic combination of DL with
spectral optical architectures allowed the computational imaging community to introduce new
optical systems by designing the underlying coded elements in a data-driven approach [19-22].
Specifically, the two main drawbacks of the DL-based CSVI approaches are the inaccessibility
to public SV databases and the elevated computational resources required for training. Despite
the progress in multidimensional compression [23], most of the latest research has focused on
CSVI optical architectures that avoid performing temporal compression to circumvent the high
computational complexity and often poor reconstruction results.

To overcome these limitations, we propose a new snapshot compressive spectral video
codification approach. It provides spectral and temporal compression using a dynamic spectral
and temporal windowing encoding method, synchronizing a tunable spectral filter with a DMD
to achieve spectral dynamic CCAs. Experiments consider a coded aperture design based on a
temporal windowed approach to improve the reconstruction performance. For CSV reconstruction,
we develop a novel hierarchical-based methodology based on the plug-and-play alternating
direction method of multipliers (PnP-ADMM) approach. The proposed method is tested on
spectral classification and object detection problems, demonstrating its ability to compressively
capture and recover key information from spectral video scenes without requiring capturing the
entire datacube beforehand.

2. Methodology

2.1. Continuous sensing model

The proposed spectro-temporal modulation strategy can be implemented with a liquid crystal
tunable bandpass filter (LCTF), followed by a DMD, located in the focal image plane, sequentially
accommodated and separated by a relay lens, as can be seen in Fig. 1. The first step is to define
the propagation model in continuous notation to develop the discrete version and reconstruction
models.

Let fo(x,y,4,t) be the spatial-spectral-temporal object, where (x,y) indexes the spatial
coordinates, A indexes the wavelength, and ¢ indexes the temporal dimension. An objective lens
transmits the source density to the input plane of a 4 f system composed of two relay lenses with
an LCTF to spectral filter the incident light. In the 4f system’s output plane, a DMD synced with
the LCTF is located to dynamically modulate each spectral datacube following a 3D color-coded
aperture strategy [24]. The resulting wavefront after the first DMD can be expressed as

Sfilu,v,A,t) = k1 (u,v, 4, 1) ﬂ vy ) folx,y, ,)hi(x —u,y — v, t)dxdy, (D)
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Fig. 1. Sketch of the optical system, which is composed of two spectral and temporal
modulation elements LCTF and DMD. Here, the LCTF and the DMD are synced, i.e.,
they share the same switching speed.

with

u .ov. At
K(“? V’/l’ t) = iu’ivz’i/l,it Clu,lv,l/l,lt - rect AC Ly, AC ly, A/l i, At i), (2)
where hj(-) is the intensity point-spread-function (PSF) introduced by the 4f system with
the LCTF located in the middle, rect(-) represents a rectangle function, y(-) represents the
spectral source density, C € RNx*NyXNaxNi jg the binary coding applied to the (iy, iy, i, i;)-th
voxel with Civiy.inis € {0, 1}, and «(u, v, A, t) represents the continuous version of the mask
pattern [referred to as DMD in Fig. 1]. Here, iy € {0,...,Nx — 1}, i, € {0,...,Ny — 1},
ip€{0,...,Ny—1},and i; € {0, ..., N; — 1}, where N,, and N, represent the spatial resolution
of the mask, N, represents the LCTF’s total of reachable spectral steps and N, is the number of
frames. Finally, A, represents the coded aperture pixel size, A is the LCTF’s spectral resolution,
and A, represents the temporal resolution related to the switching speed of the LCTF and the
DMD elements. The resulting filtered and coded wavefront is propagated and focused into a

detector array. The wavefront field immediately before the detector can be expressed as
Ly, A1) = / LW vV, ,0hW —x',v -y )du'dv', 3)

where h,(-) represents the intensity PSF for the L3 lens. Finally, the measurement at the
(ix’,iyr)-th pixel is represented by

Gi, i, =//pu)//f2(x’,y',/1,t)-rect 2o i) avaydid, @)
Y rJa Ay Ay

where A represents the wavelength axis over the spectral range, I” represents the time axis over
the temporal range, p(A) represents the system’s normalized quantum efficiency, Ay is the size
of the camera pixel.

2.2. Discrete sensing model

The proposed spectrally dynamic and spatial-temporal windowed codification approach can be
schematically represented by Fig. 2.

Imaged by a front optics onto the image plane of a 4f system with a bandpass filter in the middle,
the data acquisition starts by filtering the spectral dynamic scene denoted by F € RNxXNyXNaxN:
where Ny and N, represent the data lengths in the two spatial dimensions, N, and N, represents
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the data length in the spectral and temporal dimension, respectively. Then, the filtered dynamic
scene is imaged into a binary reflective DMD, where the reflected light is spatially encoded
(denoted by C € RNx*NyxNaxNt)y  Note the DMD’s pattern changes with each change of the
tunable filter, which repeats its cycle N;-times. Finally, the resulting spectral and filtered spectral
dynamic scene is integrated by the sensor, producing the compressively recorded 2D snapshot

N;—1N;-1

G= Z Z F:,:,i,l,i, @C:,:,i,l,i, +E, (5)

i;=0 i=0

where G € RV=*Ny is the compressed measurements, © represents the element-wise product
operation, and E € RV-*Ny represents the additive noise.

2.3. Temporal windowing approach

The mask pattern (C), a crucial element in SCI approaches, is designed using a pixel-wise
Bernoulli random variable with a transmittance of 7. = 0.5. The spectral depth of the proposed
codification approach is limited by the bandpass filter wavelengths; the temporal resolution
[i.e., Ni]. The proposed system yields a compression ratio of NjN;. Several works have
demonstrated that the compression ratio is highly related to the reconstruction accuracy of CSVI
systems [25,26]. Some works have studied the mask pattern design to improve the reconstruction
quality without sacrificing the systems’ compression power. However, these designs are limited
to three-dimensional scenarios, e.g., compressive spectral or temporal imaging. Inspired by the
macro pixel structure approaches and spectral filter arrays, we propose a temporal-macro pixel
structure (named windowing strategy) that allows an optimal distribution of the information
across the sensor by avoiding large clusters of temporal and spectral information per pixel. In
particular, this structure decreases the number of information encoded into each pixel at the
expense of the spatial resolution. Introducing the temporal windowing encoding strategy in Eq.
(5), we obtain the following model

Gi, =

w

Z Pi (F. i (irrins) © Coigiy) | + Eiys (6)

[S—l N,-1
;=0 =0

= Digital
Tunabl . .
Scene Objective W% L2 micromiror L3 CCD Temporal windowing
lens bandpass filter devi
evice

Fig. 2. Illustration of the proposed optical coding methodology with a window size
of W = 2, number of frames N; = 16, and temporal interval per pixel of S = 4. The
optical system performs the modulation of the coded aperture C by the syncing of the
LCTF and DMD. Post-acquisition, the temporal windowing operator P;, separates the
data into corresponding G;,, measurements.
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X Ny
where P; (+) : RNx>Ny — RWXW is a subsampling operator [27] with i,, € {0, ..., W? — 1},

each i, measurement contains the information of a temporal interval of size S = N,/ W2 e N, with
W e N are the windowing size, the total of information per pixel in the compressed measurement

is relaxed from (1 - %) to (1 - ﬁ) Following the temporal macro pixel structure, Eq.

(6) can be decoupled into W? linear sensing subproblems as
g =H fi +e,, (7N

where g; € R™ represents the compressed measurements related to the temporal interval

. . . NN, .
(S - iw)-th frame to S - (i, + 1)-th frame with m = —7=; f;, € R" represents the vectorial
version of the i,,-th temporal fragment with n = NyN,N,S; €;,, € R™ is the additive noise for
the i,,-th measurement. The structure of H; , € R™*" relates to the accommodation of the coding

elements of the system. In particular, its entries are given by

(Ciw)j, if i= mod(j, m)

(Hi,)i,j = { , )

0, otherwise

fori € {0,...,m—1} and j € {0,...,n — 1}, where (c;,); are the entries of ¢;, € R", the
vectorized version of C;, = P;, (C), and mod(-) : R — W represents the modulus operator.
Additionally, as was explored previously in the state-of-the-art [28—30], to reconstruct high
dimensional data, the reconstruction of multiple dimensions could be relaxed by dividing it
into substeps. Here, we first reconstruct a grayscale temporal video of the scene, subsequently,
the grayscale estimation is used to reconstruct the SV. To achieve this, the proposed sensing
methodology defines the coded aperture C by merging a 4D random mask A € RNxXNyxNaxN:
with a 3D random mask B € RV-*Ny*N: g encode the temporal domain using an independent
mask, which can be represented mathematically as (C,-w )1,1,i/{,ir =A..i., ©B..;. The

reconstruction performance depends on the transmittance ¢ of C defined as,

Ni=1 Nj—1 Ne—1 Ny-1

= 33 YN Chi ©)

=0 i1=0 iy=0 iy,=0

Note that ¢, = t, - tp, Where t, € [0, 1] and #;, € [0, 1] correspond to the transmittance of A and
B, respectively. The optimal values of #,, and ¢, could be explored to improve the reconstruction
performance. Figure 3 illustrates an example of this coding structure in the spectral-temporal
dimension composed by the spectral response of the bandpass filter and the codification terms for
any spatial pixel.

Imposing the property of NLA Zzial A..;,.. =1, and the measurement g; from Eq. (7) is
possible to formulate a inverse problem to a grayscale version z;, of the SV f;  as,

g, =H, D'z, (10)

where z;,, € RV~N>S is a grayscale video representation of the i,,-th spectral-video segment with

z;, =Df; and D =I5y ® lg,/l ® Inewy  Newvy | is a spectral downsampling matrix, with ®
w2 w2
denoting the Kronecker product.

2.4. Hierarchical-based optimization problem

High-dimensional reconstruction algorithms based on hierarchical methodologies aim to decouple
a high-complexity optimization problem into a set of low-complexity subproblems. We build a
spectral video reconstruction from the proposed temporal windowing sensing methodology by
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splitting the high-dimensional optimization problem into W? low-complexity problems. Based
on the PnP-ADMM framework [31], the optimization problem can be modeled as

arg min g, ~ H, £, I + 5105, + 7, ~ i, + 0(05,), an
where u > 0 is a regularization parameter, #; € R" is an auxiliary parameter, ¢(-) : R* — Riis
a prior function that plays the role of an arbitrary regularizer, and ; € R" is the scaled dual
variable. To improve the reconstruction performance, the optimization problem in Eq. (11)
is initialized with a pre-recovered grayscale video version z;,, of the scene directly from the
measurement g; . This approach is inspired by image processing methods that have demonstrated
that the initial estimations can speed up convergence and avoid local minima [28-30]. Similarly
to Eq. (11), the optimization problem to estimate z;,, can be written as

arg, min llg;, ~H;, D7z, 15+ 52 1€, + 20, -~ w1, 1+ L:0(3,). (12)

where u; > 0 is the weighting of the augmented lagrangian term, §; = € RNxN>S is the dual
variable, w;,, € RM<N»S is an auxiliary variable with w;, = z;, and ¢(-) : RMNS — Risa
prior restriction function for which their structure does not need to be defined in PnP-ADMM
approaches. Since the proposed sensing methodology allows recovering in parallel the SV in W?
low-complexity problems, the proposed hierarchical-based approach reduces the computational
cost from O(W%n3) to O(n?). The PnP-ADMM procedure is summarized in Algorithm 1. In line
2, the variables z(o) g())’ and .fgfj) are initialized as all-zeros vectors. The PnP-ADMM iterations

l
for the grayscale approximation are computed in lines 4, 5, and 6, where £,,_(-) corresponds to

the cost function stated in Eq. (12). In line 8, the variables f; 0) 0(0) and 1](0) are initialized by
using the calculated variables in the first loop. Then, the PnP—ADMM iterations for the spectral
video are evaluated in lines 10, 11, and 12 here, £, is the cost function defined in Eq. (11).
Finally, the recovered video f; , is returned in line 14.

3. Results

The proposed CSV methodology is validated via simulations using a dataset of eleven spectral
videos. In particular, the first ten videos were created using the RGB-to-spectral mapping
network [32] over ten selected videos of the Need for Speed dataset [33]. Then, after a
resized/cropping step, the resulting spectral videos have a spatial resolution of N XN, = 720x720,
a spectral resolution of N; = 8, and a temporal resolution of N; = 32. The eleventh spectral

t
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=
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=
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Fig. 3. Illustration of the proposed coding structure for an arbitrary spatial position
(ix,1y) at the detector in a spectral video with N; = 6 spectral bands and N; = 3
frames.
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Algorithm 1 PnP-ADMM spectral video recovery

1: Input: Acquired data {g; ,H;  }, and maximum number of iterations 71 and T

iw

2: Initialize: z') = 0, " = 0and £\ =0

3: fortr=1:7T; —1do

4: zsm) = argmin L, (Ziw, wst),§§t)) > Grayscale video
w Zl:y‘/ w w

5: wf”l) :=argmin L, (th+1), wiw,fy)) > Denoising step
w wi“r - w w

6: flﬂ';l) = ff‘? + zl(:rl) - wxfl) > Dual update

7: end for

8. Initialize: ft.(‘?) = Dng), 053) = Dng) and 1];3) =0

9: fortr=1:7,—1do

10: fl.(:“) = arg rpin L, (f,-w, 052), l]ffv)) > Spectral video

11: 05?1) :=argmin £, (fi(‘iﬂ), 0;,, l]x)) > Denoising step

12: qgfl) = qx_“) + 05:)) - fl.(i”) > Dual update

13: end for

14: Return: Recovered video f;

video was recorded using a monochromator light source, a motorized linear stage, and a camera
sensor [34]. The resulting video was cropped to have the same dimension as the other synthetic
spectral videos. The sensing matrix is constructed following Eq. (8). Note that C is generated
from {A, B}, and its resulting transmittance ¢, can be calculated as 7, = t, - #,. These two
parameters have important repercussions on the reconstruction performance; thus, these are
studied in detail in the following sections. All simulations were conducted using an Intel Xeon
ES-2697 2.6 GHz processor with 192 GB RAM memory.

3.1. Reconstruction performance varying t,, t,, and W

We conducted comprehensive studies on how the transmittance of each coded aperture and the
window size would affect the reconstruction performance. For this analysis, the parameters were
setas {tq,1p} € {0.25,0.5,0.75},and W € {1, 2, 3,4, 5}. Reconstruction results are summarized
in Figure 4 in terms of the peak signal-to-noise ratio (PSNR), structural similarity index metric
(SSIM), spectral angle mapper (SAM), and the customized general perceptual error metric
(GPEM, details are summarized in Appendix 4.1). For each of the used metrics, the overall
best configuration for W, z,, and ¢, is shown in a continuous green square, and the specific best
pair of ¢4, and ¢, is shown with a dotted orange square. These results show that the optimal
reconstruction performance, according to the GPEM, in the proposed methodology is achieved
when ¢, = 0.75, t;, = 0.25, and W = 3. Conversely and based on GPEM, the worst scenario is
presented when ¢, = 0.25, t;, = 0.25, and W = 1. In summary, the results show that the spatial
reconstruction performance tends to improve for high transmittance values (i.e., f, — 0.75) in
the first and second masks A, B. Conversely, the spectral reconstruction performance tends to
improve for high transmittance values in A (i.e., 7, — 0.75) and low transmittance values in B
(ie., 1, — 0.25)

To further compare the image quality, a representative reconstructed result of the "Kid" and
"Campesina" scenes (with #, = 0.75 and ¢, = 0.25) are shown in Fig.5. In particular, for each
scene, a selected frame of the GT is compared with their corresponding frames reconstructed
using five different values of window sizes. The full movie is shown in Video S1. These
reconstructions echo Fig. 4, which supports the positive impact of alleviating the compression
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per pixel via the windowing methodology.

3.2. Spatio-temporal reconstruction validation

To demonstrate the ability to acquire/estimate the spatial features in the time courses from
measurements acquired with the time windowed strategy, see Fig. 6. In particular, we
reconstructed a spectral video of a billiard with two moving balls, with their centroids and
circumferences being calculated at every frame, as shown in Fig. 6. This analysis is performed for
the two windowing scenarios, W = 1 (worse) and W = 3 (optimal), and by setting their optimal
pair of 74,5 (green squares in Fig. 4). In Fig. 6, the first row illustrated the circumference
prediction for the GT movie. The second and third row shows the reconstruction results, of
five equidistant frames, obtained with W = 1 and W = 3, respectively. Figure 6 shows that
without the temporal windowing (i.e., W = 1) methodology, the reconstruction fails to accurately
recover the spatial-temporal details, which can be noticed in the detection failure of the billiard
balls. In contrast, using the temporal windowing methodology (i.e., W = 3), accurately recovers
each billiard ball’s size, shape, and position in the entire sequence, which can be noticed in the
successful detection. To quantitatively analyze reconstruction, the centroids of all two balls were
traced, as seen in Fig. 6 (a). The relative errors of each centroid along the temporal courses
in the reconstruction with and without temporal windowing are presented in Fig. 6 (b). The
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Fig. 4. Reconstruction performance analysis by varying ¢, f5,, and W for the spectral
videos used in the experiments section 3 (see Visualization 1). Here, the optimal result
for each heatmap is highlighted with a dotted orange square. Additionally, the better
result per metric is highlighted with a straight green square.
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Fig. 5. Visual analysis of the reconstruction of the spectral videos Kid and Campesina
using a transmittance of {z, = 0.75,f, = 0.25} and varying W € {1,2,3,4,5}.

quantitative results show that using temporal windowing produces a higher reconstructed image
accuracy than without using the windowing methodology.

3.3.  Spectral validation

To demonstrate the ability to accurately recover the spectral features, we performed spectral
classification of the billard video using a spectral K-means algorithm set up for seven spectral
groups [35]. Figure 7 reports the quantitative and qualitative results of this validation, which
is performed for the frames {1, 9, 17, 25, 32} of the GT video (first row), and the reconstructed
videos using a temporal windowing of W = 1 (second row) and W = 3 (third row). The colors
in the segmentation maps show seven representative classes in the scene, comparing with the
ground truth SV in Fig. 6 it is possible to relate them to the white and red pool balls, the fabric,
and wood of the pool table, and the cue stick, In particular, the classification results attained using
W = 3 are 24% and 10% higher in terms of the Accuracy and F1-Score metrics, respectively,
than those obtained with W = 1.

Finally, to further validate the spectral reconstruction accuracy, Fig. 8 illustrates the first
four eigenvectors estimated from the spectral covariance matrices for the same spectral frames
analyzed in Figs 6-7. In particular, the superiority of the temporal windowing methodology can
be appreciated in the estimation of the fourth eigenvector, where the results show an average
SAM of 4.18° for W = 3 and 13.06° for W = 1. These results echo the classification performance
presented in Fig. 7. Thus, the temporal windowing methodology leads to a relaxation of the
reconstruction problem, which contributes to better rendered image quality.
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Fig. 6. Results of circle detection experiment over reconstructed billard spectral video
using W = 1 and W = 3, for each pool ball in the scene is calculated the relative error
of the predicted centroids.

4. Conclusions

In this article, we propose a CSVI modulation scheme using a dynamic color-coded aperture
and windowing approach for wavelength and temporal dimensions, respectively. The encoded
spectral and temporal information is acquired within a single image snapshot, where the coded
aperture is defined as the multiplication of two independent masks. The proposed coded aperture
structure independently modulates the temporal-spectral dimensions, and the proposed windowing
approach reduces the compression level, allowing the formulation of a hierarchical reconstruction
method, and resulting in the relaxation of the inverse problem. The results suggested that the
best spatial-temporal-spectral reconstruction is achieved using a window size W = 3, and the
combination of ¢, = 0.75 and 7, = 0.25 transmittance for the masks A and B. Notice that a
high number of window sizes W increases the temporal resolution while the spatial resolution
decreases, then, W = 3 represents a fair trade-off between the spatial and temporal resolution.
Furthermore, according to the GPEM, the temporal-spectral recovery performance improves for
t, and 15, with high and low values, respectively. The proposed methodology was also compared
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Fig. 7. Results of spectral classification experiment over reconstructed billiard spectral
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in both spectral classification and object detection applications. Results demonstrated superior
performance for capturing and recovering key information from compressed spectral video scenes
compared to traditional CSV schemes.

Appendix
4.1. General Perceptual Error Metric (GPEM)

Although PSNR, SSIM, and SAM metrics quantify the reconstruction errors, in this work the
performance of each metric depends on the scene. Then, a general perceptual error metric
(GPEM) is proposed. Similar to [36], the optimal configurations are different for each metric,
then, to find the optimal configuration, the GPEM corresponds to a dimensionless normalized
linear combination of PSNR, SSIM, and SAM.

2
s = Z a @y, (13)
k=0

where, Zi:o ay = 1 and &; € RK*K2XKs corresponds to the matrix arranging normalized the
values of the k-th metrics (PSNR, SSIM, and SAM) for K, videos, K, window sizes, and K3
combinations of transmittances t, and ;. For the metrics where the greater the better, such
as PSNR and SSIM, the normalized metric is defined as Ci)k = _Qe-min(®)__ gyt for the

] max (@) —min(Dy) *
SAM metric, the lower the better ®; = 1 — #%. Where max(-) and min(-) are the

maximal and minimal values of each matrix.
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