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Supplementary Discussion 1: Breast MNIST Simulation Details 
 
Prior to conducting any experiments, we first validated our approach with beam 
propagation method (BPM) simulations. Since our experimental design is based on 
linear operations, we solve numerically the linear wave propagation equation. Working 
in the linear domain allows us the ability to perform one-step simulations i.e., the 
propagation does not need to be divided into small steps of dz.  
 
In line with our experimental prototype, we defined a spatial grid covering the spatial 
light modulator (SLM) active area where modulation is performed. A Gaussian beam 
is created with samples from the Breast MNIST dataset encoded as phase objects. 
Since the samples in the dataset have small (28 x 28 pixels) resolution, they are 
upsampled to fit the active area of the SLM. Following linear beam propagation and 
focusing with a lens, the complex field is multiplied with one of the 4096 pre-computed 
random matrices, determined by genetic algorithm (GA). The random matrices are 
defined as follows: an initial, fully random matrix is generated corresponding to position 
0. Then, the random matrix at position 1 is created with half of the elements originating 
from the random matrix at position 0, and the remaining half is created randomly. This 
procedure goes on until the last random matrix. As a result, consecutive random 
matrices become correlated, emulating the stepper motor rotation in the experimental 
setup. After multiplication with a given random matrix, normalized intensity profiles are 
obtained with another relaying lens and linear beam propagation, after which ridge 
classification is performed to obtain classification accuracy. In simulation, GA 
parameters of 𝑛	 = 	12 generations and 𝑝	 = 	4 population size are used. An example 
BPM script can be found on GitHub (1). 
 
Supplementary Discussion 2: 4f Imaging System and Input Encoding 
 
The beam expander with the Keplerian design applied to the laser beam consists of 
two lenses placed in parallel at a distance equal to the sum of their focal lengths and 
its magnification can be calculated by the ratio of the focal lengths of the constituent 
lenses. The lenses used in this 4f imaging system are two bi-convex lenses with focal 
lengths of 30 mm and 268 mm. In the 4f imaging system, input beam inversion does 



not pose a problem for us because the output beam has the same intensity pattern as 
the input due to the azimuthal symmetry of the input Gaussian beam. As a result, SLM 
receives a magnified laser beam whose input intensity pattern did not change. 
Similarly, after reflection from the SLM, we use a 4f imaging system, again using two 
bi-convex lenses with focal lengths of 268 mm and 50 mm. 
 
In the encoding step, since the size of the samples in the datasets was often smaller 
than the size of the SLM, we performed image upsampling using bilinear interpolation 
for each sample such that the illuminated region on the SLM was filled with the sample. 
In areas where the SLM could not be filled by the rescaled image, we simply performed 
zero-padding.  
 
Supplementary Discussion 3: The Experimental Setup and the Scattering 
Medium Used in Experiments 
 

 
 
Figure S1: The experimental setup used for genetically programming random 
projection kernels. A disk covered with adhesive tape is used as the scattering 
medium, as seen on the inset. SLM: Spatial light modulator. 
 
  



Supplementary Discussion 4: Hardware Flow Control and Software Flow Control 
 
In Fig. S2 we illustrate our computing platform as a diagram including the interaction 
between the optical and electrical layers and the flow of our genetic algorithm-based 
scattering medium optimization. 
 

 
 
Figure S2: The hardware and software flow control of our proposal. The optical steps 
are illustrated with images and the software part is illustrated in light blue. Genetic 
algorithm operations such as mutation and crossover are shown schematically. 
Supplementary Discussion 5: Similarity Between Adjoint Random Projection 
Kernels 



 
To see the similarity between different random projection kernels, we performed two 
additional experiments. First, we fixed a reference point on our diffuser (disk with the 
adhesive tape) and rotated it within a range of 9 steps in either direction, which 
corresponds to an angular span of 1.58∘, and recorded the resulting image at each 
angular position. We hypothesized that, by calculating the similarity between any 
image and the reference image, we could get a measure of the relation between 
corresponding random projection kernels. Because of its popularity in image 
processing and deep learning, we used the structural similarity index measure (SSIM). 
Fig. S3 shows the average SSIM for five trials. As can be seen in the figure, the general 
trend manifests itself as a negative correlation between angular displacement (in 
absolute terms) and similarity. 
 

 
 
Figure S3: Average structural similarity index measure (SSIM) for consecutive points 
on the diffuser. 
 
Second, we rotated the diffuser for 0∘, 90∘, 180∘ and 270∘ while a sample from the 
Fashion-MNIST dataset is displayed on the SLM. In Fig. S4 we show captured images 
and normalized average difference images together with SSIM values when the no 
rotation case is set as a reference.  
 



 
 
Figure S4: (a) Sample image from the Fashion MNIST dataset. (b-e) Captured images 
when the diffuser is rotated for 0∘, 90∘, 180∘ and 270∘. Structural similarity index 
measure (SSIM) values are given to the left of the images when applicable. (f-h) 
Difference images when the no rotation case is considered as a reference. 
 
  



Supplementary Discussion 6: Effects of Processing Input Images with 
Consecutive Random Projection Kernels 
 
Fig. S5 shows captures corresponding to processing the same input image with 7 
consecutive random projection kernels.     
 

 
 
Figure S5: Captures corresponding to 7 consecutive random projection kernels. 𝛥𝜃 
shows the difference in stepper motor units when the zero case is considered as a 
reference. Positive and negative 𝛥𝜃 values correspond to clockwise and 
counterclockwise rotation, respectively. 



Supplementary Discussion 7: Further Results on the Subset Method 
 
As discussed in the main text, accuracy results related to the COVID-19 X-Ray dataset 
were obtained using a subset method. We also performed GA on the full dataset to be 
able to assess the effectiveness of the subset method i.e., when all 2481 samples are 
randomly mapped. For the whole dataset, we obtained an accuracy of 91.15% 
compared to 90.14% obtained from 300 samples, which shows the approximation 
capability of the subset method. Fig. S6 shows the confusion matrices and the 
evolution of the accuracy in this setting. 
 

 
 
Figure S6: Results for the COVID-19 X-Ray dataset when the full set is used for 
genetic algorithm (GA). (a) Confusion matrix (CM) corresponding to the first GA 
iteration. (b) Confusion matrix obtained at the end of GA. (c) Evolution of the accuracy 
during GA. 
 
Supplementary Discussion 8: Performance on the Fashion MNIST Dataset 
 
We have also tested the popular Fashion MNIST dataset with 70,000 samples(2) to 
benchmark the performance of our programmable optical random projection scheme 
and to evaluate our method's performance for multilabel classification. Similar to the 
COVID-19 X-Ray dataset, we utilize generating a subset to decrease the programming 
time of our optical neural network. Thus, a subset of randomly selected 3000 samples 
with an 80/20 train-test split is created from 70,000 samples of the Fashion MNIST 
dataset. To set a baseline for our method, we apply the ridge classification over the 
selected subset and obtain 73.83% accuracy. At the beginning of the programming, 
after the first GA iteration, an accuracy of 71.33% is obtained. At the end of the 
programming, this classification accuracy is increased to 81.00% (Fig. S7b), resulting 
in an approximately 10% improvement. The entire Fashion MNIST dataset with 60,000 

https://www.zotero.org/google-docs/?kCHA6H


training and 10,000 test samples is optically processed for the programmed condition, 
and the classification accuracy of 83.06% is achieved. The row-wise normalized 
confusion matrices captured during the evolution of GA (Fig. S7a, c) and inference 
(Fig. S7d) further supported our claim that programming random neural networks 
effectively decreases classification errors. 
 

 
 
Figure S7: Experimental learning results for the Fashion MNIST dataset when a 
subset of the full dataset is used for genetic algorithm (GA). (a) Confusion matrix (CM) 
corresponding to the first GA iteration. (b) Evolution of the accuracy during GA. (c) CM 
obtained at the end of GA. (d) CM corresponds to the full dataset when all the samples 
are passed through the optimal angular position yielded by GA. 
 
Supplementary Discussion 9: Performance on High Resolution Multilabel 
Classification Problems 
 
To better support our approach in terms of scalability in resolution, we perform 
additional multilabel classification experiments with the RS_C11 dataset (6) with 1232 
samples each having 512 x 512 pixels resolution and the Aerial Image Dataset (AID) 
(7) having 10,000 samples each having 600 x 600 pixels resolution, both of which fit 
in our SLM. The task is to classify satellite images based on the scene categories they 
represent. There are 11 and 30 categories for RS_C11 and AID, respectively. An 
80/20 train/test split is used for both datasets. 
 
Fig. S8 shows the evolution of classification accuracy during GA iterations for both 
datasets, where confusion matrices are not visualized because of the high number of 
classes. Without any optical processing, the RS_C11 dataset yields 12.96% accuracy 
when ridge classification is solely used. The first GA iteration then yields 10.93%, 
which is further optimized to be 21.05%. The results for the RS_C11 dataset show the 
superiority of our approach compared to ridge classification. 
 
For AID, we employed the same subsetting scheme that was discussed for the 
COVID-19 X-Ray and the Fashion MNIST datasets because of the high number of 
samples. In other words, we collected a subset consisting of 3000 samples (100 
samples per scene category) and let GA run to optimize this subset. As previously, 
before any optimization was performed, the ridge classification accuracy of the subset 
was found out to be 25.83%. At the first GA iteration, the optically processed subset 
produced an accuracy of 22.33% which is worse than the unprocessed ridge 



classification accuracy. However, as can be seen from Fig. S8b, we ended up with 
34.83% accuracy. After completing GA iterations, we used the optimized random 
projection kernel to obtain 25.95% accuracy compared to the unprocessed accuracy 
of 12.9% for the whole dataset. Further comparisons for both datasets are given in 
Table S2. 
 

 
 
Figure S8: Evolution of classification accuracy for the high resolution multilabel 
geospatial (a) RS_C11 and (b) Aerial Image datasets.  
 
Supplementary Discussion 10: Effect of GA Parameters on Classification 
Accuracy 
 
In this section, we investigate the effects of the number of generations and population 
size on classification performance for some of the datasets evaluated in the main text. 
Towards this end, for each dataset, we perform multiple experiments where the 
number of generations is fixed at 𝑛	 = 	12 and the population size is swept as 𝑝	 = 	4, 6, 
and 8. Fig. S9 plots the accuracy versus population size for this setting. 



 
 
Figure S9: Accuracy values versus population size for a fixed number of generations 
of 𝑛	 = 	12. Evolution of maximum accuracy through generations are given for 
population sizes of 4, 6, and 8.  
 
Additionally, to examine how the accuracy changes under the condition that the 
number of random projection kernels evaluated during GA is kept constant at around 
40, we performed experiments with 𝑛	 = 	5, 𝑝	 = 	8, and 𝑛	 = 	7, 𝑝	 = 	6. The evolution 
of maximum accuracy through generations is shown in Fig. S10 along with other 
experiments having different GA parameters. In the graph, while the line type (dashed 
or straight) differentiates between 𝑛 values, different 𝑝 values are color coded.  



 
Figure S10: Evolution of maximum accuracy with different GA parameters for the (a) 
Breast MNIST, (b) COVID-19 X-Ray, and (c) Fashion MNIST datasets. 𝑝 and 𝑛 denote 
the population size and the number of generations, respectively.  
 
  



Supplementary Discussion 11: Detailed Visualization of Clustering Performance 
 
Fig. S11 shows 3D LDA results on the randomly-mapped subset of the Fashion MNIST 
dataset for the best GA iteration from various elevation and azimuthal angles. 
 

 
 
Figure S11: 3D linear discriminant analysis (LDA) results on the randomly-mapped 
Fashion MNIST dataset for the best genetic algorithm (GA) iteration for elevation 
angles of 15∘, 30∘ and 45∘ and azimuthal angles of 30∘, 135∘, 225∘ and 330∘. 
 



Supplementary Discussion 12: Effects of Data Compression on Performance 
 
When applying local averaging to randomly mapped data to reduce the number of 
pixels used for ridge classification, we fixed a pool size of (20,16). Fig. S12 shows 
alternative pool sizes and the corresponding number of pixels along with ridge 
classification accuracies.   
 

 
Figure S12: Ridge classification accuracies corresponding to different pool sizes used 
in local averaging for a randomly mapped subset of the Fashion MNIST dataset 
consisting of 6000 samples. The maximum accuracy is obtained for the 
aforementioned pool size of (20,16).  
 
Data compression can also be carried out through reducing the bit depth in captures 
obtained from randomly mapped inputs. In our experimental setup, we used a camera 
capable of recording 8-bit grayscale images. Although practically not possible because 
of the way digital computers process data, we emulated a camera capable of 
representing images using less bits to test our approach in data-scarce settings by 
mapping the range 0 − 255 to a smaller range. If such an operation were possible, 
faster data rates would be enabled without sacrificing the classification accuracy. Fig. 
S13 shows GA results for different bit depths. We conclude that with suitable hardware 
tailored for modern machine vision tasks, our method can offer improvements in 
classification accuracy. 
 
Although the positive effects of reducing the bit depth on the accuracy seem 
counterintuitive, we associated different levels of quantizing the resulting images with 



nonlinearities of different power. As is known from neural networks, linear operations 
alone are not sufficient for generalization. Therefore, reducing the bit depth improves 
classification accuracy, and this reduction can be interpreted as employing ReLU (or 
sigmoid) functions of different slopes. However, further investigation is needed to 
uncover the exact relation between different bit depth levels and conventional 
nonlinearities. 

 

 
Figure S13: Dependence of ridge classification accuracy on the bit depth of captures 
in the Breast MNIST dataset. Separate experiments were carried out where 8-bit 
original captures were normalized and represented with 1, 2, and 4 bits. A maximum 
accuracy of 83.33% was obtained for bit depths of 1 and 2. 
 
Table S1 demonstrates the effectiveness of our approach by comparing the 
classification accuracies obtained by (i) processing the randomly-mapped, 8-bit data 
and (ii) running GA from scratch (Fig. S13) to yield representations using less bits. 
These cases are denoted by the “accuracy without GA” and “accuracy with GA” rows, 
respectively. Without GA, after reducing 8-bit captures to 4-, 2-, and 1-bits and 
applying pooling and ridge classification, we observed small to no changes in 
classification accuracies, whereas when we let GA search for the optimal random 
mapping in different quantization schemes, we observed relatively higher 
improvements. This implies the adaptive nature of our approach to cases where high 
bitrates are desired when bit depth can be sacrificed. Modern machine vision tasks 
requiring real-time performance, therefore, could be a future application where we can 
test our programmable reservoir.  
 
Table S1: Comparison of different quantization schemes in terms of classification 
accuracy with and without running genetic algorithm (GA) for the Breast MNIST 
dataset. 



 8-bits 4-bits 2-bits 1-bit 

Accuracy without GA 76.92% 76.92% 77.56% 76.28% 

Accuracy with GA - 78.85% 83.33% 83.33% 
 
 
Supplementary Discussion 13: Benchmarking Accuracy Levels 
 
To provide a broader perspective, we compared our approach with other popular 
approaches on the same datasets, taking into account the number of parameters used 
in each approach. This comparison is presented in Table S2 below. From the table, 
one can conclude that programmable optical random neural networks generalize well 
across different datasets when the number of parameters are constrained. 
 
Table S2: Comparison of different approaches in terms of their classification accuracy 
and number of parameters for different datasets. 

Dataset Approach Test accuracy Number of 
parameters 

Breast MNIST 

Our approach 82.05% 961 

ResNet-18 (3) 86.3% ~11 million 

Ridge regression 66.67% 784 

PCA + Ridge 72.44% 2 

COVID-19 X-Ray 

Our approach 90.14% 961 

ResNet-101 (4) 95.58% ~44.5 million 

Ridge regression 74.85% 1000 

PCA + Ridge 60.97% 2 

Fashion MNIST 

Our approach 83.06% 961 

ResNet-18 (5) 94.9% ~11 million 

Ridge regression 81.13% 784 
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PCA + Ridge 39.68% 2 

Retinal disease 
classification  

Our approach 87.70% 961 

Vanilla CNN Not trainable ~468.9 million 

Ridge regression 85.65% 960 

PCA + Ridge 91.73% 2 

RS_C11 

Our approach 21.05% 961 

Ridge regression 8.91% 1024 

PCA + Ridge 20.65% 2 

AID 

Our approach 25.95% 961 

VGG-16 (7) ~90% ~138 million 

Ridge regression 12.9% 900 

PCA + Ridge 7.45% 2 

 
Supplementary Discussion 14: Energy Consumption Across Computing 
Platforms 
 
We now provide quantitative metrics regarding the energy consumption in our optical 
computing platform and conventional GPU-based computing platforms. In our setup, 
energy consumption is only due to the light source, spatial light modulator, stepper 
motor, camera, and the CPU used to implement ridge classification, which have power 
ratings of 4.6 W, 50 W, 1.2 W, 1.1 W, and 25 W, respectively, totalling 81.9 W. 
Meanwhile, an NVIDIA RTX 4070 graphics card draws 200 W of power. 
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