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In the Supplement 1 we report in Section 1 details about the derivation of the Hamiltonian and the
method followed for its diagonalization, and in Section 2 the HgCdTe parameters and material
models employed throughout the present work.

1. DERIVATION OF THE HAMILTONIAN

The Hamiltonian describing the SPP-OC interacting system includes three terms (we neglect any
interaction with external environment, reservoir, etc.):

Ĥ =ĤOC + ĤSPP + Ĥint. (S1)

Here, ĤOC is the free electromagnetic field Hamiltonian, whose derivation can be found in [1, 2].
As a short reminder, the electromagnetic vector potential A is decomposed in normal modes,

A =

(
h̄

2Vϵ0

)1/2

∑
q

ζ̂
√

ωOC,q

(
a∗qeiqr + aqe−iqr

)
, (S2)

where ζ̂ is the electric field polarization unit vector, q = (ω/c, q) and r = (ct, r), q is the electric
field wavevector and aq are complex coefficients. Then, a∗q and aq are replaced by creation
(destruction) operators â†

q (âq), which obey bosonic commutation rules, in analogy with the
harmonic oscillator. From the electric and magnetic fields in the Coulomb gauge, E = −∂A/∂t
and B = ∇× A, respectively, the free OC Hamiltonian takes the standard form

ĤOC = ∑
q

EOC,q

(
â†

q âq +
1
2

)
, (S3)

where EOC,q = h̄ωOC,q is the energy of an OC mode with wavevector q.
ĤSPP is the Hamiltonian of the free electron plasma, whose oscillations result from the linear

response to the solicitation of the harmonic electric field of the SPP propagating mode. Classically,
the resulting average dipole moment of the charge distribution over some volume V can be
described by a vector field P with a dipole moment unit vector d̂, which, in this simple formulation,
lies in the same direction of ζ̂ (i.e., along x̂). We can consider a mode expansion of P similar to
Eq. (S2). Then, the quantization of P and the subsequent derivation of ĤSPP proceeds as for a
harmonic oscillator. The obtained expression is [3–5]

ĤSPP = ∑
p

ESPP,p

(
b̂†

p b̂p +
1
2

)
, (S4)

where ESPP,p = h̄ωSPP,p is the energy of a SPP mode with wavevector p, and b̂†
p (b̂p) are the

bosonic operators for the creation (destruction) of plasmons.

A. SPP-OC interaction Hamiltonian
The interaction Hamiltonian can be derived within the principle of minimal coupling [6] and
written in the electrical dipole gauge as [5, 7, Ch. 4]

Hint =
∫

d3r
1

ϵ0ϵr(r)

[
−D(r) · P(r) +

1
2

P2(r)
]

, (S5)

and it is valid for non-magnetic materials. Here, D(r) = −ϵ(r)∂A(r)/∂t is the electrical dis-
placement field, ϵ = ϵ0ϵr is the dielectric permittivity, ϵ0 and ϵr are the vacuum and relative



permittivity, respectively. The quadratic interaction term P2 describes the self-interaction of the
polarization modes, and therefore contains the effects of the dipole-dipole plasmonic interactions.

After elevating all the fields to the role of operators, D̂ can be expressed from the time-evolution
of Â according to the Heisenberg equation,

D̂ = − ϵ0ϵr
dÂ
dt

= ϵ0ϵr
i
h̄
[Â, ĤOC] = ϵ0ϵr

i
h̄ ∑

j
h̄ωOC,j[Â, â†

j âj]

= − iϵr

(
ϵ0h̄
2V

)1/2

∑
q

ζ̂
√

ωOC,q

(
â†

qeiq·r − âqe−iq·r
)

, (S6)

which is consistent with [5].
Regarding P̂, it can be shown that the plasmons creation b̂† and destruction b̂ operators must

be rescaled by the square root of the carrier density N [3–5], hence they can be redefined as
proportional to the plasma frequency

Ωpl =

(
Ne2

ϵ0ϵrm∗

)1/2

, (S7)

where m∗ is the electron effective mass. A good decomposition of P̂ in normal modes, which
includes this constraint and has correct dimensions, is

P̂ =

(
ϵ0h̄
2V

)1/2
Ωpl ∑

p

d̂
√

ωSPP,p

(
b̂†

peip·r + b̂pe−ip·r
)

. (S8)

The interaction Hamiltonian follows as:

Ĥint =− i
∫

d3r
h̄Ωpl

2V ∑
p,q

√
ωOC,q

ωSPP,p

(
â†

qeiq·r − âqe−iq·r
) (

b̂†
peip·r + b̂pe−ip·r

)

+
h̄Ω2

pl

4ϵrV

∫
d3r ∑

p,q

1
√

ωSPP,p, ωSPP,q

(
b̂†

peip·r + b̂pe−ip·r
) (

b̂†
qeiq·r + b̂qe−iq·r

)
. (S9)

The spatial integration and the summation over q yield

Ĥint = i I0
h̄Ωpl

2 ∑
p

√
ωOC,p

ωSPP,p

(
â†

p − âp

) (
b̂†

p + b̂p

)
+ ∑

p

h̄Ω2
pl

4ϵrωSPP,p

(
b̂†

p + b̂p

)2
, (S10)

where I0 is the overlap integral between the interacting SPP and OC modes. Moreover, if only
one SPP and one OC modes are considered, the summations in Eq. (S10) accounts for just one
term, leading to the simpler form

Ĥint = i γ
(

â† − â
) (

b̂† + b̂
)
+ δ

(
b̂† + b̂

)2
(S11)

with SPP-OC interaction energy

γ = I0
h̄Ωpl

2

√
EOC
ESPP

(S12)

and SPP-SPP dipole-dipole interaction energy

δ = K0

(
h̄Ωpl

)2

ESPP
, (S13)

coherent with [8], where K0 is a plasmon-plasmon coupling constant. The term proportional
to δ should be retained in the strong coupling regime [8, 9], but when the optical power flux is
low (as for the IR detectors employed in astronomical imaging or surveillance optical systems)
and the SPP-OC coupling is weak (i.e., when γ ≪ EOC, as it happens for tabs ≈ 0.8 µm in the
considered detector), it can be safely discarded (however, this is a controversial point, and for a
general discussion see, e.g., [5, 8, 10–12]).
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B. Diagonalization of the Hamiltonian
The full Hamiltonian in Eq. (S11) is similar to the one proposed by Hopfield [13, 14] and can be

diagonalized by a standard procedure. By defining a vector v̂ =
(

â b̂ â† b̂†
)

, Ĥ can be written as

Ĥ = v̂† Mv̂, where

M =


EOC iγ 0 iγ

−iγ (ESPP + δ) iγ δ

0 −iγ EOC −iγ

−iγ δ iγ (ESPP + δ)

 (S14)

can be read from Ĥ. The secular equation

det(JM − EI) = 0, (S15)

where J = diag(1, 1,−1,−1) and I is the identity matrix, can be solved for E, yielding the
eigenvalues E±

E2
± =

E2
OC + E2

SPP + 2ESPP δ

2
± 1

2

√[
E2

OC −
(
E2

SPP + 2ESPP δ
)]2

+ 16γ2ESPPEOC. (S16)

The mode splitting at the SPP-OC crossing is defined as

∆ = (E+ − E−)|ESPP=EOC
≈ 2γ (S17)

where the last approximated equality holds only if γ ≪ EOC. We can accept it as a rough estimate
and express ∆ as

∆ = 2γ = I0h̄Ωpl, (S18)

which implies E+ ≈ EOC + ∆/2 and E− ≈ EOC − ∆/2, not a rigorously valid result in the general
case of strong coupling.

As we observed in the text, an alternative approach could be to remain within the classical
electrodynamics. By following the coupled mode theory, an expression simplified with respect to
Eq. (S16) can be found [15],

E± =
EOC + ESPP

2
± 1

2

√
(EOC − ESPP)

2 + 4γ2. (S19)

It can be observed that in this expression enter the energies instead of their squares as it happens
in Eq. (S16). Moreover, it is important to remark that Eq. (S19) can be obtained also within our
quantum mechanical formalism, by reducing it to the rotating wave approximation (RWA). The
latter is obtained by neglecting the term in P2 in the interaction Hamiltonian – hence, setting
δ = 0 in Eq. (S11)) and also the counter-rotating terms proportional to the products â† b̂† and âb̂
in the same Eq. (S11). We emphasize that the RWA or the coupled-mode theory do not correctly
describe the strong-coupling scenarios [5, 8], nevertheless they enlighten what is, in this context,
the classical limit of the full quantum description.

The FDTD simulations presented in this article are based on the solutions of Maxwell’s equa-
tions. Strictly speaking, therefore, the location of high absorption stripes in the presented color
maps of the responsivity should be compared with the Hamiltonian eigenvalues provided by
the Eq. (S19). Nevertheless, the differences between the values for E± provided by this equation
(RWA description) and the Eq. (S16) (quantum mechanical description) are quite small for the
investigated detectors anyway, as can be seen in Fig. S1, and both descriptions can be employed.
Conversely, in the strong-coupling regime, i.e., if γ/EOC ≈ 1, the description provided by the
RWA would be unacceptable. In general, especially with regard to possible investigations and
comparison with experimental data, however, the Eq. (S16) should always be used.
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Fig. S1. Eigenvalues E± at the crossing EOC = ESPP, calculated within the described full quan-
tum electrodynamics formalism (QED, Eq. (S16), with K0 = 1) and within classical electrody-
namics, or rotating-wave approximation (RWA, Eq. (S19)). The values of γ/EOC corresponding
to tabs = 0.4 µm and tabs = 0.8 µm, according to Eq. (S17), are marked as vertical lines. In the
worst case (tabs = 0.4 µm), the difference is a blue-shift around 6%.
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2. MATERIAL PARAMETERS

Table S1. Material parameters for Hg1−xCdxTe used in the present simulations.

Parameter References

Eg (x, T) = −0.302 + 1.93x − 0.81x2 + 0.832x3 + 5.35 × 10−4
(

T3 − 1822
T2 + 255.2

)
(1 − 2x) [16, p. 1243]

χ(x, T) = 4.23 − 0.813
(
Eg(x, T)− 0.083

)
[17, p. 1331]

me(x, T) =
m0

1 + 2F +
1
3

Ep

(
2

Eg (x, T)
+

1
Eg (x, T) + δ

) , where Ep = 19 eV, δ = 1 eV, F = −0.8

mh = 0.55 m0

[18]

µe(x, T) = 9 × 108
(

0.2
x

)7.5 1

Z2( 0.2
x )

0.6 , where Z =


T if T > 50 K

1.18 × 105

2600 − |T − 35|2.07 if T ≤ 50 K

µh(x, T) =
µe(x, T)

100

[19, Eq. 14.7]

B = B̂ ϵ1/2
∞

(
1

me(x) + mh

)3/2 (
1 +

1
me(x)

+
1

mh

) (
300
T

)3/2 (
Eg(x, T)2 + 3kBTEg(x, T) + 3.75(kBT)2

)
B̂ = 5.8 × 10−13 cm−3s−1

[20, Eqs. 5, 9]

Cn(x, T) =
1

2n2
i τi

A1
, Cp(x, T) =

Cn(x, T)
γ

1 −
3Eg(x, T)

2kBT

1 −
5Eg(x, T)

4kBT

 , where γ = 6,

τi
A1(x, T) = τ̂ ϵ2

∞

√
1 +

me(x, T)
mh

(
1 + 2

me(x, T)
mh

)
exp (A0(x, T))

B0 (x, T)
, τ̂ = 3.8 × 10−18 s

A0(x, T) =

1 + 2
me(x, T)

mh

1 +
me(x, T)

mh

 Eg(x, T)
kBT

, B0(x, T) = me(x, T)|F12|2
(

kBT
Eg(x, T)

)1.5
, F12 = 0.2

[20–22, Eqs. 5, 9]

ϵ0(x) = 20.5 − 15.5x + 5.7x2, ϵ∞(x) = 15.2 − 13.7x + 6.4x2 [17]

ni(x, T) = ñi ni0(x, T) Eg(x, T)
3
4 T3/2 exp

(
−

Eg(x, T)
2kBT

)
, where ñi = 1014 cm−3

ni0(x, T) = 5.24256 − 3.5729x − 4.74019 × 10−4T + 1.25942 × 10−2xT − 5.77046x2 − 4.24123 × 10−6T2
[23]

α(x) =


α0(x) exp

(
σ(x) (hν − E0(x))

T + T0

)
if hν < ET(x)

αT(x)

√
2 σ(x)
T + T0

[
hν −

(
ET(x)− T + T0

2 σ(x)

)]
if hν ≥ ET(x)

α0(x) = exp (−18.88 + 53.61x)

αT(x) = 100 + 5000x, T0 = 81.9 K, σ(x) = 3.267 × 104 (1 + x) ,

E0(x) = 1.838x − 0.3424 eV, ET(x) = E0(x) +
T + T0
σ(x)

ln
(

αT(x)
α0(x)

)
[24]
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