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Abstract: Light-matter interactions are known to lead to the formation of polariton states 

through what is called strong coupling, allowing the formation of two hybrid states usually 

tagged as Upper and Lower Polaritons. Here, we consider a similar interaction between 

excitons and photons in the realm of strong interactions, with the difference that it enables us 

to obtain a mixed-polariton state. In this case, the energy of this mixed state is found between 

the energies of the exciton state and the cavity mode, resulting in an imaginary coupling 

coefficient related to a specific class of singular points. These mixed states are often 

considered unobservable, although they are predicted well when the dressed states of a two-

level atom are considered. However, intense light confinement can be obtained by using a 

Bound State in the Continuum, reducing the damping rates, and enabling the observation of 

mixed states resulting from the correct kind of exceptional point giving place to strong 

coupling. In this study, using the Transfer Matrix Method, we simulated cavities made of 

porous silicon coupled with CsPbBr3 perovskite quantum dots to numerically observe the 

mixed states as well as experimentally, by fabricating appropriate samples. The dispersion 

relation of the mixed states is fitted using the same equation as that used for strong coupling 

but considering a complex coupling coefficient, which can be directly related to the 

appropriate type of exceptional point. 

© 2023 Optica Publishing Group under the terms of the Optica Publishing Group Open Access Publishing 
Agreement 

1. Introduction 

First proposed around 1960 [1], strong coupling and the resulting bosonic quasiparticles 

known as polaritons have seen ever-increasing interest in the last few years, as several groups 

have raised their capacity to obtain and manipulate them by strongly controlling the 

parameters of the materials used to observe this coupling [2]. Following this achievement, 

new devices based on polariton Bose-Einstein condensation [3], polariton lasing and sensing 

[4,5], and modulating chemical reactions [6] have emerged, as well as all the possibilities for 

fabricating robust quantum technologies, given the drastic reduction in the future polariton-

chip size and increase in their speed performance [7,8]. 

On the other hand, the ability to fabricate materials with specific parameters has also 

allowed observation of Bound States in the Continuum (BICs) in optics over the past decade 

[9]. BICs allow strong localization of energy in an open resonator coupled to a radiation 
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continuum [9-11], possessing infinite radiative lifetimes, thus enabling boundless 

enhancement of electric and magnetic fields through a divergent quality factor [12]. However, 

in practice, finite material extension, intrinsic absorption losses, fabrication defects, and 

structural disorders result in the fabrication of real-world leaky structures with quasi-BICs 

[13]. Two main types of quasi-BICs have attracted attention in recent years: symmetry-

protected BICs and accidental BICs [14-16]. Given that a BIC can be explained by 

destructive interference, with only a discretized diffraction channel remaining open when 

photonic structures are on the subwavelength scale, the former is observed when the coupling 

of this channel to free space ceases owing to symmetry mismatch, whereas the latter can be 

observed by continuous parameter tuning [12,17]. 

The presence of BICs goes hand-in-hand with non-Hermitian physics because an open 

resonator implies a complex system with losses. In principle, a non-Hermitian system shows 

real eigenvalues if its Hamiltonian satisfies the conditions for parity-time (PT) symmetry 

[18]. However, in these systems, there are regions where symmetry is either preserved and 

broken, resulting in the existence of Exceptional Points (EPs) and the degeneracy of the 

Hamiltonian eigenfunctions and their complex eigenvalues [19]. This coalescence of 

eigenvalues implies that the Hamiltonian can no longer be diagonalized. In these cases, the 

system can be physically manipulated to lie either at or around the EP singularity [20]. In this 

context, optics and photonics have become natural domains for the experimental observation 

and use of these singularities [21,22]. 

BICs are often associated with emissive systems that improve or modify their emission 

properties. In this regard, perovskite nanocrystals have recently attracted attention owing to 

their potential applications in photovoltaic cells, light-emitting diodes, and tunable single-

photon sources [23-27]. Similarly, the search for strong excitonic effects, low-temperature 

processing, and simple scalability, while allowing strong light-matter interactions, has also 

attracted significant interest in these materials to study room-temperature exciton-polariton 

formation [28-31]. In parallel, there is a growing interest in using porous silicon (p-Si) in 

biosensing and photonic applications, including strong coupling [32-39]. Indeed, porous 

silicon is a versatile nanoplatform thanks to the coral-like morphology produced by the 

electrochemical etching of crystalline silicon (c-Si). When extremely porous, light can be 

emitted because of the quantum confinement of charge carriers in the nanostructure as the p-

Si skeleton thickness is reduced to a few nanometers (<4.3 nm, exciton Bohr radius) with the 

participation of surface states [40]. In addition, given that the etching process is self-limiting 

and primarily occurs at the pore tips, it opens the possibility of fabricating multilayered 

porous structures with a high contrast index between the porous layers, good interface quality, 

and a large surface area (540-840 m2/cm3). 

In this work, we discuss the theoretical frameworks used first to calculate the photonic 

response of the coupled system, corresponding to the p-Si photonic cavity and the CsPbBr3 

perovskite quantum dots (QDs), and then the model to calculate the coupling between them, 

that is, the fitting of the corresponding dispersion relation. In this scope, we discuss how the 

presence of BIC modes allows the manifestation of related Exceptional Points, which gives 

rise to strong coupling such that mixed polaritonic states can be observed. We then present 

our simulation results for a wide range of related parameters, based on the corresponding 

empirical parametrization equation. From there, it follows naturally the fitting of the 

corresponding dispersion relations by considering the singularities resulting from the presence 

of BICs and EPs, that is, an imaginary coupling coefficient. We then discuss the band 

structure of the coupled system and topological charge of the mixed polaritonic states, 

showing how this topological charge reinforces the presence of the imaginary coefficient. 

Finally, we give preliminary experimental evidence of mixed polaritons for some associated 

parameters. 

2. Methods and protocols 



2.1 Transfer Matrix Method 

To study light propagation in stratified media, once Maxwell’s equations and the appropriate 

boundary conditions have been established, one of the best approaches is to calculate the 

Fresnel coefficients and use the complete refractive index of the system to consider 

absorption and its possible effects on polarization. An effective and well-known way to 

achieve this is to use the Transfer Matrix Method (TMM) [41]. This methodology also allows 

the calculation of the reflectance, density of states, and field intensity of different layers of the 

media. By correctly introducing a gain, possible emissions from the media can also be 

considered. This approach has already helped to study the influence of microcavities’ 

asymmetry on their transmittance properties and strong-field effects [37], as well as on the 

formation and interaction of polaritons in p-Si at room-temperature [38]. In this study, the 

TMM was used to simulate the photonic response of a coupled system consisting of an 

asymmetric cavity completed by a layer of perovskite quantum dots. 

2.2 Strong coupling model 

The interaction of light with matter can be described under some approximations by a Jaynes-

Cummings Hamiltonian as 𝐻0 = ∑ 𝐸𝑋𝑘 (𝑘) 𝑏𝑘
†𝑏𝑘 + ∑ 𝐸𝐶𝑘 (𝑘)𝑎𝑘

†𝑎𝑘 + ∑ 𝑔̃𝑘 (𝑎𝑘
†𝑏𝑘 + 𝑏𝑘

†𝑎𝑘) , 

where 𝐸𝑋 is the exciton energy, 𝐸𝐶  is the photon energy in the cavity, 𝑎†(𝑎) and 𝑏†(𝑏) are the 

creation (annihilation) operators for the photon and exciton, respectively, and 𝑔̃  is the 

coupling term, which can be also designated as Rabi splitting. The first term represents the 

electronic states of matter for a generic two-level system, the second term corresponds to a 

structured radiation field, and the third term describes the interaction between the two systems 

[42]. In a weak-coupling situation, the interaction can be described by the photon excitation 

of an electron from the ground state to the excited state. When coupling becomes more 

important, the structured light field and specific optical transitions are adequately described 

by the above Hamiltonian with its creation and annihilation operators. High coupling 

coefficients are generally obtained by increasing the number of quantum emitters and 

reducing the volume of the optical confinement modes [43]. 

In this work, we are using a simpler and more intuitive non-Hermitian Hamiltonian for 

coupled oscillators, which can be written as: 

𝐻 = (
𝜔𝑐𝑎𝑣 − 𝑖

𝛾𝑐𝑎𝑣

2
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with the corresponding eigenvalue problem and polaritonic eigenvalues: 
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where 𝜔𝑐𝑎𝑣  and 𝜔𝑒𝑥  are the uncoupled cavity mode and QD exciton angular frequencies, 

respectively; 𝛾𝑐𝑎𝑣  and 𝛾𝑒𝑥  are their corresponding damping rates; 𝜔+  and 𝜔−  are the 

frequencies of the hybrid states, which usually are referred as the high- and low-polariton 

branches, respectively. 𝑔̃ is the coupling strength, which is treated as a complex number in 

this work so that we can address both usual and mixed coupling conditions, as it will be 

shown below. 𝛿 = 𝜔𝑐𝑎𝑣(𝜃) − 𝜔𝑒𝑥  is the angular or in-plane k-detuning between the cavity 

and QDs exciton energies, considering explicitly the angle-resolved cavity mode. 𝐶 and 𝑋 are 

the Hopfield coefficients representing the cavity mode and the exciton weighting coefficients 

for each hybrid state, respectively, where |𝐶|2 + |𝑋|2 = 1. The energy separation between the 

hybrid polariton bands at the anti-crossing, 𝛿 = 0, defines mode splitting or Rabi splitting as 

follows: 



𝛺 = √4𝑔̃2 − (
𝛾𝑐𝑎𝑣

2
−

𝛾𝑒𝑥

2
)

2

. (4) 

Apart from 𝛿- or k-detuning, strong coupling is also regularly studied in terms of the 

energy difference among the cavity and the exciton at normal incidence, that is, the cavity-

detuning Δ = (𝜔𝑐𝑎𝑣(𝜃) − 𝜔𝑒𝑥)𝜃=0 , where three cases are possible: negative (𝜔𝑐𝑎𝑣(𝜃) −
𝜔𝑒𝑥)𝜃=0 < 0,  positive (𝜔𝑐𝑎𝑣(𝜃) − 𝜔𝑒𝑥)𝜃=0 > 0, or zero (𝜔𝑐𝑎𝑣(𝜃) − 𝜔𝑒𝑥)𝜃=0 = 0 detuning. 

Note that this Hamiltonian is not diagonalizable at the critical coupling strength, given by 

𝑔𝐸𝑃 = |𝛾𝑐𝑎𝑣 − 𝛾𝑒𝑥| 4⁄ , where the exceptional point of this coupled system gives rise to a Rabi 

splitting. Furthermore, as established in [22], for a two-level system in a Fabry-Perot-type 

microcavity, this approach allows the phenomenon of strong coupling to be treated both 

classically and quantum-mechanically. 

To discuss the obtained results in terms of BICs and EPs, two considerations must be 

made. The first concerns the conditions required for non-vanishing Rabi splitting and 

spectrally separable resonances, given by 2|𝑔̃| > |
𝛾𝑐𝑎𝑣

2
−

𝛾𝑒𝑥

2
| and 𝛺 >

𝛾𝑐𝑎𝑣

2
+

𝛾𝑒𝑥

2
, respectively 

[44]. The second is the condition for the occurrence of an EP, that is, when the square-root 

term in Eq. (3) is zero because the two eigenvalues coalesce [21]. As mentioned above, Rabi 

splitting occurs from this EP when a real coupling constant is assumed. However, for 

inversion population conditions, the non-Hermitian character of the system grants the 

coupling constant to be imaginary, and then the presence of mixed polaritonic states, even in 

the absence of damping [22], which will be verified for our system when considering its 

topological aspects. 

2.3 Perovskite QDs fabrication 

Regarding the perovskite QDs preparation, by following a typical hot-injection synthesis, 0.2 

mmol of PbBr2 (73.4 mg) and 5 mL of 1-octadecene were loaded in a 25 mL three-neck round 

bottom flask, the mixture was nitrogen purged at 120 °C for 1 hour, then 0.5 mL of 

oleylamine and 0.5 mL of oleic acid were injected into the reaction flask, the mixture was 

stirred until all PbBr2 was completely dissolved. Then 0.2 mL of OLA-HBr at 80 °C and 0.5 

mL of Cs-oleate at 100 °C were injected successively. The reaction mixture was cooled in an 

ice bath immediately after the final injection. Then, 5 mL of the crude solution was loaded 

into a centrifuge tube containing 5 mL of acetone and centrifugated at 7000 rpm for 30 min. 

After centrifugation, the supernatant was discarded, and the precipitate was dispersed in 

toluene. In this way, CsPbBr3 QDs approximately 8-10 nm in size can be obtained (the 

corresponding micrograph is shown in the supplementary information, Fig. S1) [45]. 

2.4 p-Si cavities fabrication, complex refractive index calculation and 
photoluminescence measurement setup 

Porous silicon (p-Si) microcavities were fabricated by electrochemical etching of p-type 

boron-doped crystalline silicon (c-Si) wafers with a (100) orientation and an electrical 

resistivity < 0.005 Ω cm. Before the etching process, an aluminum layer was evaporated on 

the backside of the c-Si wafers and heated to 550 ºC in an inert atmosphere for 15 min, to 

create an electrical contact. The Teflon cell was filled with an electrolyte composed of 

aqueous hydrofluoric acid (HF), ethanol, and glycerin at a volume ratio of 3:7:1. 

Electrochemical etching, in which the c-Si substrate acted as the cathode and a platinum mesh 

as the anode, was initiated by applying a constant electrical current. The porosity and 

thickness of the p-Si layer depend on the current density and etching time, respectively, both 

of which are computer-controlled using a Keithley 2450 Source Meter SMU Series. This 

control of the porosity and thickness determines the optical path length of each layer, 

allowing the tuning of its photonic response. To minimize the porosity gradient in each layer, 

pauses of 1 s every 4 s of etching were applied during the anodization. p-Si simple bilayers 

with low and high porosities were then fabricated by alternating the applied current density 



during the electrochemical etching, between two values, 3 mA/cm2 and 40 mA/cm2, 

respectively, denoted as layers A and B. Multiple layer stack samples, or microcavities, were 

obtained by combining low- and high-porosity layers in a Distributed Bragg Reflector (DBR) 

sequence, where the conditions for the respective thicknesses, dA and dB, define their 

corresponding refraction indexes: 𝑑𝐴  =
𝜆𝐷𝐵𝑅

4𝑛𝐴
 , 𝑑𝐵  =

𝜆𝐷𝐵𝑅

4𝑛𝐵
. After anodization, the samples 

were rinsed with ethanol and dried under a nitrogen flow. Finally, the p-Si samples were 

passivated by thermal oxidation at 300 °C for 30 min. Previously, a layer of aluminum was 

removed from the c-Si substrate to prevent its diffusion during thermal oxidation and to avoid 

possible Al contamination during the quantum dots deposition. 

P-Si is a nano-structured material composed of a skeleton of c-Si surrounded by air. The 

complex refractive index, η = nR – inI, can be calculated using the effective medium 

approximation (EMA), following Estrada-Wise and del Río [46], as shown in [38]. 

Angle-resolved photoluminescence (ARPL) was measured at the University Laboratory of 

Optics at Surfaces (Laboratorio Universitario de Óptica de Superficies) into the Physics 

Institute of UNAM (LOS-UNAM). The sample was excited at 355 nm using an EKSPLA 

PL2231-50-SH/TH Nd:YAG pulsed laser System featuring ~26 ps pulses with a repetition 

rate of 10 Hz. The spot diameter was fixed at 3.6 mm by using a diaphragm. The emission of 

the sample was collected using an optical fiber (Ocean Optics model P1000-2-UV-VIS with a 

core of 1000 µm) and analyzed using an Ocean Optics USB2000+ UV-VIS spectrometer. 

Both the sample and optical fiber were attached to a rotational Newport RSP-1T plate to 

control the incidence and emission angles, respectively.  

3. Results and discussion 

3.1 qBICs and EPs 

Recently, we discussed the presence of qBICs in asymmetric photonic crystals [37] and 

aperiodic quasi-crystals [38]. When considering intrinsic-lossy, non-Hermitian systems, such 

as p-Si, the introduction of an asymmetry can reduce reflectance of a given mode compared to 

the case of the symmetrical micro-cavity and enable an increase in the field strength within 

this novel cavity [37]. This result is directly related to the appearance of robust states, with 

practically zero bandwidth and large factor quality, giving rise to a broadband large Purcell 

factor, that is, the previously discussed qBICs [47-49]. In this study, we selected an 

asymmetric mirror cavity as the photonic component of the coupled system. This cavity, as 

shown in Fig. 1(a), consists of ten pairs of alternating layers with different refractive 

properties, A and B, with a defined thickness of each one, an extra layer of type A at the 

bottom to break the mirror cavity, and a layer called a defect of type B, whose thickness can 

be varied at the top. Fig. 1(a) shows the selected design, while Fig. 1(b) shows the reflectance 

at normal incidence (k = 0), and the corresponding density of states (DOS), which can be 

obtained for a given set of fabrication parameters, considering a non-zero cavity-detuning. 

Here, these parameters are set to maximize reflectance at the QDs’ emission wavelength 

(around 510 nm). The importance of the fabrication parameters is discussed in detail in the 

next section when discussing mixed polaritons. 

 



Fig. 1. (a) Asymmetric mirror cavity design, normal incidence reflectance (R%) and density of 
states (DOS) as a function of the wavelength (b) without and (c) with the perovskite quantum 

dot layer. These curves in (b) and (c) are obtained for film thicknesses 𝑑𝐴  = 66.97 nm, 𝑑𝐵  =
95.85 nm, 𝑑𝑑𝑒𝑓𝑒𝑐𝑡  = 590 nm, and 𝑑𝑄𝐷  = 110 nm for (c). 

 

The coupled system was obtained by depositing a layer of perovskite QDs on top of the 

asymmetric mirror cavity, that is, on the top defect layer B. The thicknesses of the defect 

layer and the QD layer are adjustable parameters. The large density of states and the 

corresponding field localization (not shown in Fig. 1) are evidence of the BIC nature of the 

cavity modes that can be obtained for this design. Figure 1c) shows that the strong coupling 

between the perovskite quantum dots and the photons confined in the asymmetric cavity thus 

formed results in the appearance of new narrower and deeper reflectance modes. The 

emission peak of this pol-BIC mode (reflectance dip around  𝜆𝑝𝑜𝑙−𝐵𝐼𝐶 = 523.9 nm) gives a 

quality factor (𝑄 =
𝜆𝑝𝑜𝑙−𝐵𝐼𝐶

𝛾𝑝𝑜𝑙−𝐵𝐼𝐶
⁄ =) of about 2.2×106. This Q-value is obtained by curve 

fitting using a Lorentzian function with a width at half maximum equal to 𝛾𝑝𝑜𝑙−𝐵𝐼𝐶 = 0.24  

pm. As shown in the next section, the signature of qBICs is manifested by reflectance dips 

and divergence of emission at the corresponding energies and k-positions. This is a result of a 

large Purcell factor and a corresponding small decay rate associated with the BIC. However, 

there is another immediate consequence: the damping of this mode and the 

photoluminescence (PL) peak decrease to almost zero. 

There are conditions where the coupling constant 𝑔̃ becomes imaginary: this occurs when 

𝛾𝑐𝑎𝑣 = 𝛾𝑒𝑥, and the cavity detuning is non-zero. These exceptional points, identified as EP2 in 

Ref. [22], may be associated with a population inversion condition where the polaritonic 

modes of the coupled system merge into a single mode. We will also see in the next section, 

that the dispersion relations giving rise to mixed polaritons can only be reproduced by 

considering a complex coupling constant. 

Note that mixed polaritons, emerging from this kind of EPs, had already been predicted 

before, given that the energy spectrum is continuous [50], which is satisfied here, because the 

non-Hermitian Hamiltonian of Eq. (1) can be classified as a Hamiltonian of the von 

Neumann-Wigner type, characterized by a bounded potential [51]. These previous studies 

lead to conclude that the resulting mixed polaritons are also BICs, that is, BIC-polaritons, or 

pol-BICs as they are commonly referred to in the literature, which are the corresponding 

eigenfunctions of this type of EPs. 

3.2 Mixed polaritons 

Based on previous results [37,38], we have analyzed the influence of several structural 

parameters of the photonic cavity on their qBIC modes and on the polariton (pol-BIC) 

formation. In particular, we studied the effect of changing the defect and QD layer 

thicknesses 𝑑𝑑𝑒𝑓𝑒𝑐𝑡  and 𝑑𝑄𝐷 , as well as the value of λDBR, defined by the condition for the 

DBR sequence 𝑛𝐴𝑑𝐴 = 𝑛𝐵𝑑𝐵 =
𝜆𝐷𝐵𝑅

4⁄ , for values not necessarily close to the exciton 

wavelength emission. The consequences of these variations on the light-matter interaction for 

this coupled system were studied by implementing a Python code based on the TMM, as 

mentioned previously. 

Simulated angle-resolved reflectance spectra obtained for the asymmetric mirror cavity 

configuration shown in Fig. 1, are plotted in Fig. 2. The simulated spectra obtained without 

the QD layer are shown in Fig. 2(a) for 𝑑𝑑𝑒𝑓𝑒𝑐𝑡 =  590 nm and λDBR = 480 nm. The 

corresponding simulated spectra by considering a strong coupling with a 100 nm-thick 

perovskite QD layer are plotted in Fig. 2(b), between 2.1 and 2.6 eV, where the QD exciton 

resonance is expected. In Fig. 2(a), the presence of a deep reflectance dip at different 

energies, and around k momentum values of ±1×107 nm-1 (angular range ±40-60 °), can be the 



signature of a qBIC resonance. The hybridization of optical cavity modes and QD excitons 

gives rise to pol-BICs. Fig. 2(b) shows that the dispersion relation (around 2.4 eV) exhibits 

two branches, characteristic of Lower- (LP) or Upper-polaritons (UP). For instance, LPs are 

more intense and exhibit a narrower energy dispersion.  

 

Fig. 2. Angle-resolved reflectance simulation results obtained for an asymmetric mirror cavity 
(a) without quantum dot layer, and (b) by considering a strong coupling with a perovskite 

quantum dot layer. White arrows mark the qBIC mode and the corresponding pol-BIC formed 

after the hybridization. White horizontal lines mark the 2.32 and 2.43 eV energies mentioned 

for Fig. 3(b). 

Fig. 3(a) shows the experimental photoluminescence (PL) of perovskite QDs in solution 

and deposited on a p-Si membrane, while Fig. 3(b) shows the simulated characteristic 

emission from LP and UP pol-BICs at approximately 2.36 eV (526 nm) and 2.41 eV (515 

nm), for an angle of 58.5°, respectively, in the case of a very small damping parameter 

𝛾𝑝𝑜𝑙−𝐵𝐼𝐶 . For the QD/cavity coupled system considered here, the intensity contrast is visually 

much easier to identify (due to limitation in the signal to noise ratio) in the emission 

configuration than in the reflection configuration. In the rest of this work, we used angle-

resolved photoluminescence results (simulations and measurements) to study pol-BIC 

formation. 

 

Fig. 3. Experimental emission from the perovskite QDs in (a) solution, on a p-Si layer, and (b) 

simulated emission at 2.36 eV (526 nm) and 2.41 eV (515 nm) from LP and UP pol-BICs, 
respectively. The vertical red line separates the two regions corresponding to the UP [500, 525] 

and LP [525, 540], respectively. 

The specific character of the various types of pol-BICs, including mixed polaritons 

associated with certain exceptional points where the coupling constant becomes imaginary, 



should manifest itself in their dispersion relation. In this work, we sought to identify a set of 

parameters for which strong emission peaks from our QD/cavity coupled system can be 

ascribed to BIC resonances. Figures 4(a)-(d) present the simulation results of the peak PL 

intensity emitted by the coupled system, for a range of values for 𝑑𝑑𝑒𝑓𝑒𝑐𝑡  and 𝑑𝑄𝐷 , regardless 

of the wavevector value, in two wavelength regions, [500, 525] and [525, 540], corresponding 

to the UP and LP, respectively (separated in Fig. 3 by the vertical red line). Note that 525 nm 

(2.36 eV) is the wavelength emission of the isolated CsPbBr3 perovskite QDs. Figures 4(a) 

and 4(b) show the UP emission with and without considering absorption from the p-Si and 

perovskite systems, respectively, whereas Figures 4(c) and 4(d) show in an analogous way the 

LP emission. To illustrate how values of these maps are obtained, that is, how the peak 

intensity emitted by the coupled system is obtained, for both UP and LP, with and without 

absorption, Figures 4(e) and 4(f) show simulated emission spectra at some discrete angles, 

and for a pair of 𝑑𝑑𝑒𝑓𝑒𝑐𝑡  and 𝑑𝑄𝐷  values, corresponding to the marked points 1 and 2 in Fig. 

4(a), respectively. For point 1 (𝑑𝑑𝑒𝑓𝑒𝑐𝑡 = 220 𝑛𝑚, 𝑑𝑄𝐷 = 250 𝑛𝑚), the peak PL intensity for 

the UP emission corresponds to that measured at -72° (red spectrum in Fig. 4(e)), while for 

point 2 (𝑑𝑑𝑒𝑓𝑒𝑐𝑡 = 220 𝑛𝑚, 𝑑𝑄𝐷 = 10 𝑛𝑚), it corresponds to the UP emission measured at -

69° (red spectrum in Fig. 4(f)). These maps show parameter regions where pol-BICs are more 

likely to emerge. In particular, for thick QD layers (> 280 nm), regions of high PL intensity 

are less prominent when the imaginary part of the QD layer’s refractive index is not 

considered (no QD absorption). Although counter-intuitive, this is a manifestation of the 

qBIC mode, for which interference between different radiative dissipation modes is 

destructive. For smaller QD layer thicknesses (< 200 nm), the effect of taking QD absorption 

into account on the PL intensity of LPs and UPs is more subtle, and we will come back to 

these considerations in the next paragraph. However, considering the patterns formed for both 

UP and LP emissions, there seems to be a shift when considering the absorption. To analyze 

this, attention should be focused on the region of 0-100 nm for 𝑑𝑄𝐷 , varying 𝑑𝑑𝑒𝑓𝑒𝑐𝑡 , for the 

UP, with and without absorption, that is, the left side of Figs. 4(a) and 4(b), respectively. 

From these figures, a periodicity of approximately 215 nm was established. By considering 

the refractive index of the defect layer, this periodicity becomes 𝐿𝑝𝑒𝑟 = 𝑛𝐵 ∗ 𝐿 ≈  1.22 ∗

215 ≈  260.2 𝑛𝑚 ≈
525

2
→

𝜆𝑒𝑥𝑐𝑖𝑡𝑜𝑛

2
. 



 

Fig. 4. Simulation results showing the cartography of the peak PL intensity of the QD/cavity 

coupled system when varying 𝑑𝑑𝑒𝑓𝑒𝑐𝑡 and 𝑑𝑄𝐷. (a) UP with absorption, (b) UP without 

absorption, (c) LP with absorption, and (d) LP without absorption. (e) and (f) Simulated 

emission spectra for some wavevectors from points 1 and 2 in part (a), respectively. Black 

vertical line marks the exciton emission from isolated QDs. The red squares in (e) and (f) 

indicate spectral regions where the intensity of the UP peak is maximal. 

To identify the set of parameters of the QD/cavity structure for which pol-BICs will 

emerge from the presence of a qBIC, we have performed a parametric analysis where the 

angle-resolved PL spectra were obtained for different thicknesses of the QDs layer (𝑑𝑄𝐷) and 

the photonic cavity condition (λDBR), for a fixed defect layer thickness (𝑑𝑑𝑒𝑓𝑒𝑐𝑡). The presence 

of pol-BICs manifests itself by a very high PL intensity (here arbitrarily considered larger 

than 105). Figure 5 shows the simulation results obtained for 𝜆𝐷𝐵𝑅 = 500 nm. For this set of 

parameters, UPs emerge at minimum reflectance values (Fig. 5(a)), while LPs appear at 

maximum reflectance values (Fig. 5(b)). This directly corresponds to the results shown in Fig. 



4: because absorption minimizes reflectance, UPs are more intense when absorption is 

considered (Fig. 4(a)), whereas LPs are more intense when there is no absorption, that is, 

when the reflectance is higher, as shown in Fig. 4(d). A second observation obtained from this 

parametric analysis is the coexistence of several UPs and/or LPs that are likely to be 

separated by a resonance reflectance dip, as shown in Fig. 5(c), because several exist for 

certain cavity parameters, as shown in Fig. 1. 

 

Fig. 5. (a) UP and (b) LP reflectance (the red curve corresponds to the left scale) and 

photoluminescence intensity (the blue curve corresponds to the right scale) from pol-BICs. (c) 

Angle-resolved pol-BIC reflectance and PL intensity obtained for 𝑑𝑄𝐷 = 104 nm, with 𝜆𝐷𝐵𝑅 =

500 𝑛𝑚 and fixed 𝑑𝑑𝑒𝑓𝑒𝑐𝑡 = 590 𝑛𝑚. 

The dispersion relation for the cavity mode can be described in terms of the angular 

position (wavevector k) as 𝜔𝑐𝑎𝑣(𝜃) = 𝜔𝑐𝑎𝑣(0) (1 −
𝑠𝑖𝑛2(𝜃)

𝑛𝑒𝑓𝑓
2 )

−
1

2
, where 𝜔𝑐𝑎𝑣(0) = 𝜔0  is the 

cavity mode energy at normal incidence and 𝑛𝑒𝑓𝑓 is the cavity effective refraction index. The 

value of neff () can be approximated by the refractive index of the defect layer, assuming that 

the incident electric field is maximal in this layer and considering conditions where 

𝑑𝑑𝑒𝑓𝑒𝑐𝑡  >>  𝑑𝑄𝐷 . Our simulations also show that the cavity mode frequencies are essentially 

determined by the characteristic 𝜆𝐷𝐵𝑅  value of the periodic structure 

( 𝜔0(𝜆𝐷𝐵𝑅 , 𝑑𝑑𝑒𝑓𝑒𝑐𝑡 , 𝑑𝑄𝐷) ≈  𝜔0(𝜆𝐷𝐵𝑅 , 𝑑𝑑𝑒𝑓𝑒𝑐𝑡) =  𝜔𝑜(𝜆𝐷𝐵𝑅) ), with a variation quite small 

around the bandgap of the perovskite system considered in this study (2.4 eV). Finally, the 

dispersion relation for pol-BICs is obtained using Eq. (3) with 𝛾𝑐𝑎𝑣  , 𝛾𝑒𝑥  → 0 . In the 

following, we have set the value of ddefect to 590 nm and sought to reproduce the dispersion 

relations of pol-BICs by varying neff and the exciton/photon coupling strength (𝑔̃). For dQD 

values between 90 and 110 nm, the dispersion relations have been reproduced using a 

parameterization for the neff and 𝑔̃ quantities. The effective refractive index of the cavity is 

written as a Cauchy relation of the form 𝑛𝑒𝑓𝑓() = 𝐴 + 𝐵/𝜆2, while 𝑔̃ is considered to vary 

linearly with the thickness of the QD layer, i.e. 𝑔̃ = 𝐶𝑑𝑄𝐷 + 𝐷. For most of the map areas in 

figures 4(a) and 4(c), showing pol-BICs, with peak intensities greater than 105, the best curve 

fits for their dispersion relations are obtained for the following set of parameters for the 

hybrid cavity: 𝐴 = 1.192 ;  𝐵 = 14 000 𝑛𝑚2 ;  𝐶 = 1.4 × 10−3  𝑚−1𝑠−1 2⁄  ;  𝐷 =

−0.0785 𝑠−1 2⁄ . However, there are other specific map points in Fig. 4, where pol-BICs 

dispersion relations can only be reproduced for an imaginary coupling strength. From the 



strong coupling model given above, we noted earlier the existence of a critical coupling 

strength, where an EP occurs when the square-root term in Eq. (3) is zero, and Rabi splitting 

is manifested. In the absence of BICs, this condition is given by 𝑔𝑄𝐸𝑃 = |𝛾𝑐𝑎𝑣 − 𝛾𝑒𝑥| 4⁄ , 

considering zero k-detuning.  However, when a qBIC is present and a pol-BIC is formed, then 

𝛾𝑐𝑎𝑣 , 𝛾𝑒𝑥 → 0 , and the previous condition for strong coupling is now given by  𝑔𝑄𝐸𝑃 =

(𝜔𝑐𝑎𝑣(𝜃 = 0) − 𝜔𝑒𝑥)/2. For this condition, the emission intensity is divergent, which can be 

considered as a population inversion condition, for a system with a non-zero cavity-detuning. 

Therefore, the condition becomes 𝑔̃2 + 𝛿2/4 = 𝑔̃2 + (𝜔𝑐𝑎𝑣(𝜃) − 𝜔𝑒𝑥)2/4 = 0  . The EPs 

that give rise to this specific coupling condition are those identified as EP2 in Ref. [22] and 

the corresponding coupling constant becomes imaginary: 

𝑔̃ =  𝑖𝛿/2. (5) 

In the supplementary information, Fig. S2 presents GIF images showing the evolution of 

the pol-BIC dispersion relation for real and imaginary 𝑔̃ values, for both positive (top plot) 

and negative (bottom plot) non-zero cavity-detuning at normal incidence. Dispersion relations 

of normal polaritons, for which the UP and LP branches lie outside the QD exciton and the 

photonic cavity energy limits, are obtained when 𝑔̃ is pure real. For pure imaginary 𝑔̃ values, 

exotic dispersion relations, associated with mixed polaritons, can present a distinctive C-

shape where the upper and lower polariton characters merge at an exceptional point of the 

second type (EP2: see discussion above), besides of a polariton superposition. 

Figure 6 shows a series of angle-resolved PL simulation results obtained for ddefect = 590 

nm, DBR = 480 nm, and for a QD layer thickness (dQD) varying from 92 nm to 112 nm. 

Positive cavity-detuning values are considered for these simulations. As mentioned 

previously, pol-BIC dispersion relations are obtained using Eq. (3), considering pure 

imaginary 𝑔̃ values. The values of the norm of 𝑔̃, corresponding to the different graphs in Fig. 

6, are given in Table 1. For these graphs, note that polariton energies are always contained 

within the QD exciton and photon cavity energy limits (in direct agreement with the GIFs 

images). As 𝑑𝑄𝐷  increases, |𝑔̃ | increases and the mixing of the polaritons is made more 

evident, passing from two separated LP and UP polaritons (𝑑𝑄𝐷 = 92 nm), to a polariton 

superposition (𝑑𝑄𝐷 = 96, 100, 104 and 108 nm), to more exotic dispersion relations showing 

two or several exceptional emission points (𝑑𝑄𝐷 = 112 nm), indicating topological aspects 

that will be discussed into the next section. There is indeed a continuous spectrum of emissive 

states, resolved in angle, between the exceptional points, which reflects the presence of 

superposition of polaritonic states, even though the intensity of these states decreases as the 

separation between the exceptional points increases. We would like to emphasize that this set 

of mixed states, whose presence correlates with the appearance of EP2-type exceptional 

points, reflects a break in parity-time symmetry (PT-symmetry), i.e. a transition from a 

symmetrical phase to a symmetry-breaking phase [52-54]. In other words, we pass from a 

system in equilibrium to a system in nonequilibrium, although the non-Hermitian system is 

always in dynamic equilibrium and energy is conserved, causing the energy to acquire an 

imaginary component. This is shown in Figure 7, in the transition from gray to white regions. 

This PT-symmetry phase transition clearly indicates the non-Hermiticity of our system, and 

therefore its control flexibility through the tuning of its parameters [53,54]. All these exotic 

dispersion relations result from the hybridization of the pol-BICs: we call them mixed 

polaritons, showing an imaginary coupling constant, as given by Eq. (5). In the 

supplementary information, we have drawn a map (see Fig. S3) to delimit the zones in the 

parameter space of our hybrid cavity, for which normal polaritons (yellow zones) and mixed 

polaritons (red zones) are observable. Note that the mixed polaritons occurs at periodic 

regions defined by 
𝜆𝐷𝐵𝑅

2⁄  integral periods. 

The hybridizing scheme for real and for imaginary 𝑔̃ (polariton energies either external or 

contained within the QD exciton and photon cavity energy limits) represent a complete set of 

dressed states, that is, the stationary response of a two-level system to an optical field [55,56]. 



An additional advantage of considering the full extent of strong coupling, by admitting real 

and imaginary coupling constants, is the possibility of observing a Mollow triplet [57], that is, 

a triple emission line from a two-level system under the influence of an optical field, as is 

shown in Fig. 6 when considering 𝑑𝑄𝐷 = 112 𝑛𝑚: several emission peaks can be observed at 

an angle of approximately 24°. This feature could be very relevant for applications in 

quantum technology. 

 

Fig. 6. Simulation results of the angle-resolved PL intensity in logarithmic scale and the 
corresponding dispersion relations of mixed polaritons for different QD layer thicknesses 

(𝑑𝑄𝐷), with 𝜆𝐷𝐵𝑅 = 480 𝑛𝑚 and fixed 𝑑𝑑𝑒𝑓𝑒𝑐𝑡 = 590 𝑛𝑚. 

Table 1. Coupling constant for mixed polaritons. 

𝐝𝐐𝐃 (nm) |𝒈̃|̃ (meV) 

96 45 

100 48 

104 51 

108 54 

112 59 



 

Fig. 7. PT-symmetry phase transition from the symmetric (grey regions) to the symmetry-

broken (white region) phase, where eigenenergies become complex (𝑔̃ = 𝑖0.077 eV) when 

crossing EP2-type exceptional points. 

3.3 Topological aspects of mixed polaritons 

To better understand the merging of the polaritonic modes, that is, a population inversion 

condition indicating the presence of EP2-type exceptional points, and therefore the expression 

of complex coupling constants, it is helpful analyzing the topological nature of mixed 

polaritons. As indicated in [31], pol-BICs have a topological nature inherited from qBICs, 

which are at the origin of their formation, even though these qBICs have a finite quality 

factor. For 1D photonic systems, their topological aspects are characterized by the Zak phase 

[58], which can be calculated according to the surface bulk correspondence as exp(𝑖𝜃𝑛
Zak) =

−
sgn(𝜙𝑛)

sgn(𝜙𝑛−1)
, which can have values of 0 or 𝜋, and ϕn, ϕn-1 are the reflection phases in the 

bandgaps above and below the nth electronic band [38]. To calculate the Zak phase for our 

system, first, because the cavity is not a symmetrical structure, the electronic band structure 

was calculated by considering all the sequence as the unit cell. Because the actual system is 

composed of only one unit cell, a layer of air among the unit cells was also considered in the 

calculation, with a thickness of 1 µm. From the reflectance and reflection phases calculated 

under this assumption, as shown in Fig. 8(a) for a qBIC, it is evident that there is a 

discontinuity in the Zak phase, which introduces an interface state in the gap between the 

electronic bands where this discontinuity occurs, also indicating electronic band inversion, 

that is, exchange of the conduction and valence bands after band crossing, which is a 

topological transition [38,58,59]. The gap where the discontinuity is observed, that is, the 

change from 0 to π, is centered at 2.4 eV, that is, the gap tuned to the exciton of the perovskite 

QDs. The discontinuity in the Zak phase has been recognized as a signature of the existence 

of a topological mode, which is evidenced by the rigorous relationship between the Zak phase 

and reflection phase given by the previous equation and its corresponding numerical or 

experimental verification [58]. The analysis was preserved when the coupled system was 

considered, as shown in Fig. 8(b). It is worth noting that the discontinuity is not perfect 

because we are dealing with imperfect BICs, that is, qBICs. Nevertheless, this topological 

transition, given by electronic band inversion, marks the appearance of exceptional points 

when the Zak phase is zero in its transition from the positive to negative values of the 



reflection phase, that is, at the interface state in the gap. Therefore, this topological nature of 

mixed polaritons reinforces the modeling of their dispersion relation using imaginary 

coupling coefficients. 

 

Fig. 8. From left to right, reflectance, band structure and reflection phase for (a) the 

asymmetric cavity and (b) the coupled system. Zak phase discontinuity is illustrated in the 

reflection phase for both cases. 

3.4 Experimental results 

From the polariton classification shown in Fig. S3, in the supplementary information, it turns 

out that the experimental demonstration of mixed polaritons requires precise sample 

fabrication. Otherwise, normal polaritons are obtained in the best case. Slight deviations from 

a given set of fabrication parameters, (𝜆𝐷𝐵𝑅 , 𝑑𝑑𝑒𝑓𝑒𝑐𝑡 , 𝑑𝑄𝐷), can result in mixing of different 

types of polaritons, making it difficult to correctly classify them. From our experience, we 

found that it is difficult to obtain the required thickness for the perovskite QD layer. 

Moreover, despite great efforts, the obtained deposits are not homogeneous in terms of 

thickness and QD density, which has, as an additional consequence, a variation in the 

refractive index that could be sufficient to hide mixed polaritons. An example of the 

inhomogeneity of the thickness, which implies changes rather abrupt, can be seen in Fig. S4. 

On the other hand, the variation in the QD density was mainly due to the use of ligands. In 

contrast, the p-Si cavity parameters were robust enough to preserve strong coupling, as 

observed here and in our previous results [38], although eventual oxidation, even if minor, of 

the cavity structure could alter the refractive index sufficiently to complicate the visualization 

of mixed polaritons. Therefore, experimental evidence for mixed polaritons is still in 

progress, and the experimental results presented below show their first glimpse. 

A sample with parameters (𝜆𝐷𝐵𝑅 = 480 𝑛𝑚, 𝑑𝑑𝑒𝑓𝑒𝑐𝑡 = 590 𝑛𝑚, 𝑑𝑄𝐷 = 50 𝑛𝑚)  was 

fabricated. First, electron microscopy experimental conditions were found to provoke the 

evaporation of some parts of the perovskite QD thin film deposited on the p-Si cavity surface. 

From the resulting islands, a thickness of 50 nm was measured and used in the corresponding 

simulations (see corresponding images in the supplementary information, Fig. S4). Because 

our ARPL setup is based on emission acquisition using an optical fiber, instead of the typical 

Fourier-Transform one using a microscope objective, the numerical aperture of the fiber 

naturally increases the wavevector or angular data dispersion, explaining the diffuse shape of 

the normalized emission shown on the right side of Fig. 9(b). It is also worth noting that the 

ARPL measurements clearly show a shift of more than 30 nm in the emission peak, providing 



evidence of polariton formation, as no shift was observed for the perovskite QD solution or 

for the perovskite QD deposited on a single p-Si monolayer when varying the angular 

position of the optical fiber (see Fig. S5). Consequently, the dispersion relations to fit the 

simulated and experimental normalized data shown in Fig. 9(b) must consider a non-zero 

coupling, either real or imaginary. A set of three pairs of polaritons can be used to fit the 

simulated and experimental data (see Fig. S6), with one pair always being a normal polariton 

and a real coupling corresponding to a Rabi splitting of 28 meV (extreme left signal in the 

simulated data of part (b)). The other two pairs (central and extreme right in the simulated 

data of part (b)) can be fitted either using normal polaritons, with a real coupling 

corresponding to a Rabi splitting of 16 meV for both (Fig. S6(a)), or mixed polaritons, with 

an imaginary coupling corresponding to a negative Rabi splitting of -16 meV (Fig. S6(b)). As 

observed in Fig. 9(c) and (d), where a zoom of the central data of part (b) has been applied 

(region marked by the arrow), to our best judgement, mixed polaritons allow, in general, the 

best fitting of the simulated or measured emission. As previously mentioned, this work is still 

in progress, and strong evidence of mixed polaritons is being actively investigated. 

 

Fig. 9. Experimental results for M1 sample. (a) Reflectance at normal incidence. (b) ARPL 

best-fit simulation for 𝑑𝑄𝐷 = 32 nm (left) and measurement (right) for sample M1. Dispersion 

relationships using (c) normal (real 𝑔) and (d) mixed (imaginary 𝑔) polaritons. Blue dashed 

line represents the exciton dispersion, black dashed lines the cavity modes, and orange (red) 

dashed lines represent the upper (lower) polaritons. 

4. Conclusions  

In this study, using the physical properties of quasi–Bound States in the Continuum to 

provoke the manifestation of Exceptional Points of the appropriate type, we present numerical 

and experimental evidence of mixed polaritons, for which an imaginary coupling coefficient 

is necessary. From the numerical approach, an empirical parametrization relationship can be 

deduced, which is related to the strong coupling model. The non-Hermitian nature of the 

Hamiltonian used has enabled us to highlight the complex character of the corresponding 

coupling coefficient for mixed polaritons. 



To support the appearance of the corresponding EPs giving place to the imaginary 

coupling coefficient, a topological transition was made evident using the Zak phase. This 

topological transition, caused by band inversion, occurs when the reflection phase changes 

from zero to π. This discontinuity introduces an interface state in the gap between the bands 

where it occurs, which in this case corresponds to that directly related to the exciton used to 

form polariton quasiparticles. Therefore, the topological nature of mixed polaritons reinforces 

the modeling of their dispersion relation using a complex coupling coefficient. 

Finally, preliminary experimental evidence of these mixed polaritons was obtained at 

room-temperature for a CsPbBr3 perovskite system using p-Si microcavities. The simplicity 

of the porous silicon photonic structure used to obtain these results is worth noting. The 

structure was fabricated without any special characteristic conditioning of reproducible strong 

coupling of the photonic cavity with this emissive system at room temperature. Despite its 

natural disorder and many structural defects on the nanometer scale, its topological features 

make it robust and stable for strong coupling with quantum emitters in a systematic manner. 

The main parameter to be carefully controlled during the fabrication process being the 

thickness of the perovskite QDs layer. Thus, there is room for improvement in the porosity of 

these photonic structures, their interactions with excitonic systems, and the resulting strong 

coupling between them. 
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