A theoretical framework for calibrating the depth-
dependent optical scattering in layered human skin
using spatially-offset measurements
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Spatially-offset spectroscopy offers an alternative noninvasive method for enabling deep probing of structures and chemical
molecules, which is clinically significant for the characterization of chemical and physical alterations in human skin. However, a
more precise depth-resolved quantification using the spatially-offset measurements still remains as a challenge due to the mixed
inhomogeneous scattering. Herein, we report a Monte-Carlo-based quantification modelling platform combined with a novel
scattering spectrum decomposition method to explore the depth-dependent optical scattering contributions in human skin. In the
simplified modelling, human skin was empirically set to be composed of three layers and each layer possessed different photon
weights for the spatially-offset scattering intensity measurements. The modelling results of photon transportation in-and-out of the
layered skin substantially discovered that the layer-dependent scattering contribution was compositely encoded into the spatially-
offset measurements and varied with the illumination incidence angle. For calibrating the layer-dependent scattering contribution,
a modified nonlinear independent component processing algorithm was applied to the spatially-offset measurements by
decomposing the photon weights of each layer. The calibration results figured out the major scattering contribution of each layer
along the offset axis under different incidence angles, which were consistent with previously experimental observations. The
proposed theoretical framework establishes a feasible approach for spatially-offset optical spectroscopies enabling non-invasive

guantitative A-line characterization of the concentrations of skin components. © 2024 Optica Publishing Group

As living tissues comprised of inhomogeneous molecular
components randomly disordering the light propagation inside [1],
optical scattering is the key challenge to translate the state-of-the-
art optical imaging and measurement technologies to a wider field
of clinical impact. Though optical clearing technologies have been
successfully applied to various biological tissues to reduce optical
scattering and enable deep probing of large volumes [2, 3], one
important complication caused by the invasive clearing is the loss of
tissue functions. In the meantime, a few non-invasive technologies
have been proposed to guide the forward propagation of the
photons in thick scattering tissues, including ultrasound encoding
[4-6] and wavefront shaping[7-9], which were not targeted at
addressing the issue of unpredictable photon backscattering in
probing deep tissues.

The recently developed Spatially-Offset Raman Spectroscopy
(SORS) is a non-invasive alternative approach for probing deep
tissues [10, 11], which enables depth-sensitive scattering spectrum

analysis using spatially-offset measurements. Though SORS
achieved success in characterization of thick tissues [10, 12], poor
depth resolution was suffered due to diffuse scattering, even
utilizing focused illumination and detection [13]. Another challenge
in SORS is to extract the pure spectrum contributed by the different
tissue layers, as the photons scattered from different layers were
mixed in each offset. In order to improve the sectioning
performance of the spatially-offset measurements, it is required to
calibrate the scattering contribution of each layer along the
transverse offsets. To date, there are few reports on calibrating the
specific depth contribution using spatially-offset measurements,
except for applying both scattering and absorption matrices which,
however, is not applicable to all in vivo measurements especially
where transmission mode is required [12, 14, 15].

Herein, we are presenting a Monte-Carlo-based proof-of-concept
study of calibrating the depth-dependent scattering contribution



using spatially-offset measurements. For simplicity, this feasibility
study is focused on healthy human skin model for which the
geometric and optics properties have been thoroughly investigated
[16, 17]. Without loss of generality, the human skin model was set
to be composed of three layers, i.e, epidermis, papillary dermis, and
reticular dermis, as shown in Fig. 1. It needs to be stated that the
epidermis was simplified to be one layer instead of four strata
(including the stratum corneum) and the subcutaneous layer was
also assumed to be the penetration boundary (~2 mm) if applying
a small (diameter: 1 mm) illumination spot. The other skin
modeling parameters, including thickness, scattering coefficient,
absorption coefficient, and refractive index are presented in
Supplemental Tab. S1. It is worth mentioning that the parameter
values of each skin layer can be varied on the basis of race, gender,
age, and body site [18, 19], thus the calibration can be highly
application-driven.
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Fig. 1. A conventional fiber-coupled spatially-offset configuration for layered
human skin tissues. 6 indicates illumination incidence angle. The offset
indicates the detector displacement to the incident point.

A modified variance reduction Monte-Carlo (VRMC) algorithm
[20-23] was then applied for high-speed tracking of the photon
transportation in the layered skin model. The numerical simulation
was confined to the conventional spatially-offset measurement
configuration (see Fig. 1) and utilized photon weight for quantifying
the left intensity of one photon after experiencing a random
scattering. The initial photon weight of an arbitrary photon at the
incident surface is given by
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where ng;, and n.,; indicate the refraction index of air and
epidermis, respectively. Inside the skin tissue, the photon weight of
the specific photon is concomitantly decreased per scattering event

by multiplying the following attenuation factor
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where i is the scattering coefficient and y, is the total attenuation
coefficient. It should be pointed out that each skin layer possesses
different attenuation factors as their absorption and scattering
coefficient values are different (see Supplemental Tab. S1). A
minimum threshold of the photon weight has been preset to
determine the lifetime of a photon, below which the photon was
considered to be totally absorbed or out of boundary. The flow chart
of the VRMC simulation of one-photon transportation and photon

weight update is shown in Fig. 2. Following a random scattering
pathlength, the photon weight was iteratively updated by
multiplying W;, and a Russian Roulette method was applied in
VRMC for determining whether the photon weight should be
zeroed after reaching the preset photon weight threshold.

According to the VRMC simulation procedure, the transportation
path of the incident photons in layered human skin can be figured
out (see Supplemental Fig. S1). More importantly, the spatial
distribution of the photon weight of the out photons (out of tissue)
can be tracked with layer labels, and the total weight of each layer
was superimposed by the labelled weights. For statistical
significance, 10° incident photons in total were employed to
investigate the spatially-offset scattering distribution with different
incidence angles. When the incidence angle was changed from 0
degree (normal incidence) to 60 degrees (oblique incidence), the
center of scattering photons had a transverse shift to the incident
point, as shown in Figs. 3A-B. This observation can be further
confirmed by quantifying the photon weight of each layer along the
transverse direction with a confined-size fiber detector (diameter:
100 pm), as shown in Figs. 3C-D. It is also found that the out
photons experience transverse shift and the deeper photons have
the larger shift while increasing the incidence angle, as shown in Fig.
3E. The VRMC simulation results of the photon transportation in
layered human skin verify that the depth-dependent scattering is
encoded into the spatially-offset intensity transient and oblique
incidence can improve the depth-resolve performance.
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Fig. 2. Simulation flow chart of one-photon transportation and photon
weight update using Russian-Roulette modified VRMC algorithm.
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It should be pointed out that total photon weight (TPW)
distributions of epidermis are equivalent to the experimentally
spatially-offset intensity measurements as all out photons went
through the first layer. Taking into account of the fact that each skin
layer is an independent scattering source, the TPW of epidermis can



be considered as the mixture of these sources. A calibration method
is then required to resolve the individual scattering contribution of
each layer from the spatially-offset intensity measurements.
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Fig. 3. VRMC-based numerical results of spatially-offset scattering photon
weights with different incidence angles. A-B, top views (0 and 60 degrees),
color bar: photon weight number; C-D, the fiber (diameter: 100 pm)
measurement profile along the dashed yellow lines in A-B; E, TPW peak-shift
of different layers with increasing incidence angles.

Independent component analysis (ICA)-based blind source
separation [24] was typically applied to recover the independent
source signals, however, ICA cannot deal with positive signals [25-
27], such as the photon weights. Herein, a nonlinear independent
component processing (NICP) algorithm is proposed to quantify the
scattering contribution proportion of each layer per offset using the

TPW of epidermis. The verification of the NICP algorithm using a
series of test signals can be found in Supplement 1. In NICP, the
mixed signal (TPW of epidermis) was first processed by ICA for
predicting the unmixed prototype of the individual photon weight
of each layer (see Supplemental Fig. S2B), and then nonlinear
programming (see Supplemental Eqgs. S1-S4) was applied to
further polish the spatially-offset scattering contribution
proportion (SSCP) waveform of each layer utilizing the positive-
value constraint.

NICP was performed several times to average the output SSCP
waveforms. Because the TPW obtained in a large offset (see Fig. 3)
was inlow SNR [28] and thus could be ignored, the SSCP waveforms
were only displayed within 3-mm offset, as shown in Figs. 4A-C.
The SSCP waveforms of different incident angles showed the similar
observations that 1) the scattering dominate area of the superficial
layer (epidermis) seems to be independent of the incident angle,
whose offset basically falls in the range of [0, 0.4) mm, and 2) the
scattering dominant area range of the deeper layers was expanded
with the increase of the incidence angle from 0 to 60 degrees, and it
was expanded from [0.4, 1.2) mm to [0.4, 1.7) mm for the papillary
dermis layer and from [2.4, 3) mm to [1.9, 3) mm for the reticular
dermis layer. The expansion of the dominant area would resultin a
benefit for more precise quantifications of depth-dependent
scattering, but, on the flip side, it might also cause the degradation
of depth-resolve resolution. These depth-dependent scattering
observations in the spatially-offset configuration are consistent
with previous experiment founding (including our previous work)
[13, 15], which verify the effectiveness of the utility of photon
weights quantifying the scattering contribution proportion.
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Fig. 4. The numerical-calibrated spatially-offset scattering contribution
proportion (SSCP) waveforms of different layers. A-C, the SSCP waveform
changes with different incidence angles (0 to 60 degrees).

It is also interesting to discover the scattering dominate area of
deep layers has the opposite expansion direction if continuously
increasing the oblique incidence angle, as shown in Fig. 5. The
apparent center of papillary dermis dominant area (PDDA) showed
a linear trend (R?: 0.68) of being away from the incidence point,
while the apparent starting point of reticular dermis dominant area
(RDDA) showed a linear trend (R% 0.97) of being close to the
incidence point. This phenomenon can be elaborated by the much



larger shift magnitude of the quantitative TPW peaks of reticular
dermis compared to papillary dermis (see Fig. 3E).
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Fig. 5. The spatial offset of the scattering dominate area of deep layers under
oblique illumination with different angles. PDDA: papillary dermis dominant
area; RDDA: reticular dermis dominant area.

The numerical-calibrated spatial SSCP matrices can be applied for
enabling quantitative A-line skin component concentration
measurements using the spatially-offset optical spectroscopy
instrumentations, since they provide precise photon compensations.
Assuming that X is the unknown layer-dependent molecular
concentration distribution, P is the SSCP matrices composed of each
skin layer, and S is the lateral spatially-offset scattering intensity
measurements, then they satisfy the following relationship as

S = nPX, ©)

where n is the molecular photon conversion efficiency per unit
concentration applicable for fluorescence emission or Raman scattering
and can be considered as a constant for a specific component. Since the
photon weights of each skin layer is independent, the invertible matrix
P~ must exist. Hence, the layer-dependent molecular concentration
can be calculated by

X =({P19/n. (4)

The axial resolution of the above quantitative A-line component
concentration would be limited as only three depths (ie, three layers)
are provided in the SSCP matrices, which can be further improved by
increasing the numbers of simulation photons and skin layers. Another
limitation of the utility of the numerical-calibrated SSCP matrices is the
ordinary generalization, as the structures and optical parameters of
human skin can be varied with gender, race and age.

In conclusion, we have analyzed the photon transportation in layered
human skin and quantified the photon weights of each layer using the
variance reduction Monte-Carlo (VRMC) method. The numerical VRMC
simulation results verified that the layer-dependent scattering was
encoded into the spatially-offset intensity transients and could be better
resolved with oblique illumination, which were consistent with
previous experiment demonstrations. A nonlinear independent
component processing algorithm was developed to calibrate the
spatially-offset scattering contribution proportion (SSCP) of each skin
layer. The numerical- calibrated SSCP matrices can be further applied
for achieving A-line spectroscopic measurements of human skin. Future
experiment studies will be carried out to maximize the clinical impacts
of the proposed theoretical framework.
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