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Abstract: Monitoring the carrier-envelope phase (CEP) is of paramount importance for
experiments involving few cycle intense laser fields. Common measurement techniques include
f-2f interferometry or stereo-ATI setups. These approaches are adequate, but are challenging to
implement on demand, at different locations as additional metrology tools, in intense few cycle
laser-matter interaction experiments, such as those prevalent in sophisticated user beamlines. In
addition there are inherent difficulties for CEP measured at non-conventional laser wavelengths
(like e.g. mid infrared) and measurements above 10 kHz laser repetition rates, on single shot
basis. Here we demonstrate both by simulations and by experiments a machine learning (ML)
driven method for CEP estimation in the mid infrared, which is readily generalizable for any laser
wavelength and possibly up to MHz repetition rates. The concept relies on the observation of the
spectrum of high harmonic generation (HHG) in bulk material and the use of ML techniques
to estimate the CEP of the laser. Once the ML model is trained, the method provides a way
for cheap and compact real-time CEP tagging. This technique can complement the otherwise
sophisticated monitoring of CEP, and is able to capture the complex correlation between the CEP
and the observable HHG spectra.

1. Introduction

High harmonic generation (HHG) relies on the highly non-linear interaction between ultrashort
intense laser pulses and matter [1], and has been demonstrated with a wide range of driving
laser wavelengths [2–4]. Mid-infrared (MIR) driving lasers in particular have two appealing
features. On the one hand, because of the wavelength scaling of the ponderomotive energy [2]
𝑈𝑝 ∝ 𝐼𝐿𝜆

2, the cut-off energy of the generated harmonics in gas can be extended to the keV
spectral regime [2, 4, 5], providing X-rays with unmatched temporal and spatial qualities. On the
other hand, because of its low linear excitation rate, ultrashort MIR lasers can perform HHG in
transparent solid state media [6, 7], like semiconductors or dielectrics, well below the damage
threshold of the material [8, 9].

In the few cycle regime, the carrier-envelope phase (CEP) of an ultrashort laser, which indicates
the phase of the carrier wave with respect to the peak of the intensity envelope of the pulse,
has significant impact on the strong field interaction and the HHG process. Therefore accurate
measurement/monitoring and proper control of the CEP is of paramount importance, and is
essential for multiple applications in attoscience relevant to chemistry [10], atomic and molecular
physics [11] and lightwave electronics [12], to mention a few.

There are different ways to measure the CEP of few cycle pulses, utilizing different types of
interactions, for example, like observation of half cycle cut off in HHG spectra from gas [13] or
quantum interference in semiconductors [14, 15]. Nontheless, two other techniques have become



predominant. The first, one uses f-2f interferometry where a large bandwidth fundamental
spectrum overlaps with its second harmonic signal and the appearance of the spectral fringes
reveals the relative CEP of the laser [16]. Single-shot CEP measurement above 10 kHz is
very challenging with f-2f, although several methods allows one to reach MHz repetition
rates [17–19] and the overlap between the fundamental and the second harmonic’s spectral
region might lie outside some common detectors. The second, technique is based on the
measurement of stereographic above threshold ionization (Stereo-ATI) signal [20], which is
capable of performing single-shot absolute measurements at high repetition rate [21]. But, in
spite of its advantages, Stereo-ATI needs sophisticated and expensive instrumentation and is an
in-vacuum CEP metrology tool. The last point makes it difficult to integrate into and permanently
keep in place as a metrology tool inside the sophisticated existing high repetition rate attosecond
beamlines like those existing at ELI-ALPS [22].

Recently new techniques relying on solid HHG were proposed to measure the (relative) CEP of
the laser [23] where the overlap between adjacent harmonic orders was exploited. The technique
could be scaled to longer driving wavelengths, however the appearance of the interference pattern
between adjacent harmonics is not a general condition. If the latter condition is not fullfilled an
alternative approach was proposed providing the CEP stability shot-to-shot [24] or time domain
based electric field reconstruction in solids using a delayed replica of the driving laser to perturb
the HHG process [25].

During the last decade the applications of machine learning techniques have slowly entered not
just into the every day life but into various fields of science, too. At XFELs [26] it was successfully
applied to improve and accelerate the metrology of the emitted radiation. Convolutional neural
networks have been applied to reconstruct the temporal shape of femtosecond laser pulses [27].
Interestingly, their model was robust enough to retrieve the spectral amplitude and phase from
experimental second harmonic generation-frequency resolved optical gating spectrograms while
being trained only with simulated spectrograms. Recently, independently from our study, there
was a theoretical proposition [28] to reconstruct the band structure of a crystal and at the same
time characterize the driving few-cycle laser pulse in the solid HHG process, including both their
chirp and CEP, relying on the training of deep neural network models. In another theoretical
study [29], the CEP dependence of the solid HHG was combined with deep learning models to
retrieve the band structure of MgO crystal.

In this report, we combine the benefits of solid HHG and machine learning in order to propose a
concept that helps tagging the driving laser’s relative CEP in a simple setup that is instrumentally
not demanding while still offering high repetition rate tagging. First, we demonstrate the
feasibility of such tagging relying on simulated harmonic spectra from thin ZnO crystal based
on a simple 1D model for bulk ZnO [30], that correctly reproduces its semiconducting features,
while proving useful for accurate retrieval of the spectral phases of the incident few-cycle pulse,
despite some amplitude noise and phase jitter. Then we show that even without large training
data the machine learning model can still achieve good relative CEP estimations. Next, relying
on our estimations on the number of needed training data we experimentally demonstrate that
solid HHG spectra is indeed a good indicator of the relative CEP of the driving laser.

2. Formulation of our approach

In most of the ultrafast light matter interactions, including solid HHG as well, the temporal/spectral
profile of the driving laser exhibit a deterministic influence on the outcome. In order to enable
exploitation of this feature and utilize it for laser CEP estimations, two prerequisites need to be
fulfilled. Firstly, there should be a direct, but not necessarily obvious or even explicit, correlation
between the harmonic spectrum and the laser CEP in solid HHG. Secondly, this correlation
should manifest as a one-to-one mapping, ensuring that the high harmonic spectrum of a CEP
scan exhibits a periodicity of 2𝜋, otherwise CEP prediction would be limited for only on a



fraction of the full range.
In the case of few cycle lasers, where the amplitude of the electric field changes substantially

from one half cycle to the other, interband harmonics are generated at different times in each
cycle [31, 32]. This causes a phase shift (attochirp) between the same harmonics originating
from different half cycles. By changing the CEP of the laser, the timing of the emission of
given harmonics can be directly controlled, causing the emergence of CEP dependent patterns
in the harmonic spectrum [31–33]. Therefore, the first requirement, the precense of a CEP-
dependent feature in the spectrum, is fulfiled. While CEP dependence of harmonic generation
though intraband processes in mid-infrared regime is claimed to be insignificant [34,35], with
increasing driving wavelength, signatures of CEP dependence of intraband harmonics become
more prominent [33, 36]. The symmetry properties of the target material also have influence on
the CEP response of the harmonics. When the interatomic structure is randomly distributed in
the crystal on a scale smaller than the laser wavelength, the harmonic spectrum will exhibit 𝜋
periodicity versus the CEP change, because each half-cycle will experience the same average
response, like in the case of fused silica [34]. Crystaline quartz possesses a non-centro-symmetric
crystal structure, which results in an absence of inversion symmetry, thereby leading to a nonzero
nonlinear susceptibility tensor. The broken inversion symmetry also ensures that the consecutive
laser half-cycles experience a different collective response, leading to 2𝜋 CEP dependence.

By assuring interband contributions to the harmonic generation in a broken inversion symmetry
material one paves the way for mapping one-to-one the laser CEP to the generated high harmonic
spectrum. This objective is achieved through the utilization of a representative theoretical
model for bulk ZnO that incorporates interband [36] contributions (driving with a MIR laser)
to harmonic generation and posseses C6v symmetry group, through a 2-band model. Then, a
machine learning algorithm can be trained with known CEP and solid HHG spectrum pairs to
estimate the CEP of a new laser pulse based on the generated harmonic spectrum, as depicted in
Figure 1. First, we test and validate this assumption by simulating solid HHG spectra generated
from ZnO crystal, applying theoretically constructed laser pulses with known absolute CEP
parameter. Subsequently, we demonstrate that the effectiveness of this approach does not depend
on an extensive dataset, thereby highlighting its practicality.

In the present work, we select three machine learning algorithms: Linear Regression, Extremely
Randomized Trees (ExtraTree) and Gradient Boosting. The linear regressor, the simplest one
of all three, works by assuming a linear relationship between the predictor values 𝑋 𝑗 and the
predicted value 𝑌 , expressed as 𝑌 = 𝛽0 + ∑

𝑗 𝛽 𝑗𝑋 𝑗 . Major advantages of this algorithm are
simplicity and fast training. The simple dependence on the 𝛽 𝑗 coefficients enables a direct
estimation of the significance of certain features. However, the model only performs well if there
is a direct linear correspondence between 𝑋 𝑗 and 𝑌 . [37, 38]

The ExtraTree and Gradient Boosting algorithms are both decision tree based ensemble
models. In a conventional decision tree model, a tree is formed by segmenting the dataset into
branches. The model makes decisions at each node based on feature values, eventually arriving
to a prediction at the end-points of the branches. In the ExtraTree model, multiple decision trees
are built and used concurrently, and the prediction is decided by averaging the prediction of
the independent trees. Different trees are grown from different parts of the training dataset by
employing bagging, which decreases the bias and variance in the model compared to a single
decision tree. The trees are built by randomly selecting a subset of features in the data, and using
random threshold values (as opposed to a certain criteria, such as information gain) to split the
nodes of the tree. [39]. This high degree of randomization significantly reduces the bias of the
model, and makes it less likely to overfit compared to other ensemble models (such as Random
Forest) [40].

Opposed to the ExtraTree model, where the trees are created by random selections, the Gradient
Boosting regression builds the trees iteratively. In each iteration, the model accuracy is estimated



by a loss function (typically by the mean squared error, MSE), and new trees are created to
correct the error of the previous trees. The final prediction is then given as a weighted average of
the prediction of the trees. The weights are updated using a gradient descent method in each
iteration of the training. This error-correcting strategy enables higher accuracy, but also can
make the model more prone to overfitting [40–42].

Fig. 1. Concept of the experiment. The driving MIR pulses are focused on the ZnO
crystal and high order harmonics are generated and detected with a spectrometer. By
changing the CEP of the input laser the corresponding harmonic spectrum changes
too. A machine learning model is trained to link the laser CEP to the corresponding
harmonic spectrum. Applying this model the CEP of the the fundamental laser can be
estimated from the observed harmonic spectra.

3. Simulations

In order to simulate the CEP-dependent HHG process, we employ an one-dimensional semi-
classical model, which provides a computationally efficient way to compute the response of
electrons in a periodic potential to a strong laser field [43]. Herein we adopt the single-electron
approximation to derive the Bloch states and their associated energies, enabling us to discern the
distinct contributions of various initial states to high harmonic radiation. In more detail, for an
electron with charge 𝑒 and mass 𝑚, we consider the following Hamiltonian:

𝐻 (𝑡) = 1
2𝑚

(p − 𝑒A(𝑡))2 +𝑈 (𝑥), (1)

where velocity gauge is used, A(𝑡) denotes the time-dependent vector potential component of the
external field along the 𝑥 direction, while 𝑈 (𝑥) represents the periodic (model) potential of the
solid. This simplified model of the potential adequately captures essential features of the crystal
lattice’s atomic structure, including the band gap width; however, it ignores the three-dimensional
symmetries including the broken inversion symmetry of C6v. Consequently, in our investigation
of ZnO targets, we appropriately consider factors such as the lattice constant of 5.2 Å along c-axis,
and a band gap measuring 3.27 eV. On the other hand, scattering events and finite temperature
can be taken into account by considering density matrix 𝜌 instead of pure quantum mechanical



states (which are practically Bloch waves in this case). That is, we solve the von Neumann
equation

𝜕

𝜕𝑡
𝜌(𝑡) = − 𝑖

ℏ
[𝐻 (𝑡), 𝜌(𝑡)] + 𝜕

𝜕𝑡
𝜌(𝑡)

����
𝑠𝑐𝑎𝑡𝑡

, (2)

such that the initial density matrix (before the interaction with the laser field) describes thermal
equilibrium, and the second term is responsible for the scattering events. We consider the change
of the diagonal elements of the density matrix towards thermal equilibrium at a rate of 𝛾𝑑 , and also
the decay of the off-diagonal matrix elements (i.e., the loss of quantum mechanical coherences)
with a rate of 𝛾𝑜𝑑 .) By considering realistic rates (𝛾𝑜𝑑 = 0.25 fs−1 and 𝛾𝑑 = 0.05 fs−1) , not only
the CEP dependence of the harmonic peaks can be determined, but also the most important
features of the HHG spectra, namely the presence of the plateau, and the intensity dependence of
the cutoff and the heights of the harmonic peaks can be investigated [43]. A numerical solution
is obtained using a Cash-Karp Runge-Kutta algorithm. The sinusoidal model periodic potential,
𝑈 (𝑥) is parametrized by the lattice constant 𝑑 and the potential depth 𝑈0. Corresponding to the
eight valence electrons present in one unit cell of ZnO, the value of 𝑈0 is chosen so that the
band gap between the 4th and the 5th band corresponds to the experimentally determined band
gap of ZnO, 3.27 eV, as reported by [44]. The band structure of this one-dimensional model is
presented on Fig. S4 of the Supplementary document.
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Fig. 2. Theoretical CEP scan performed in ZnO with a 18 fs, 𝐼0 = 1.36× 1012 W cm−2,
3.2 µm laser (a). Performance of the machine learning algorithm on estimating the
measured relative laser CEP using the train (orange rectangles) and the test (open blue
circles) datasets is shown in (b), with respective MSE% values of 0 and 0.06. The slope
of both estimations are close to 45◦, representing almost perfect estimating capabilities.
One fifth of the test data set is plotted to provide better visual transparency between the
train and test data.

For simulating the HHG process, a laser with 𝑡𝑝 = 18 fs pulse duration, 𝜆0 = 3.2 µm and a
peak intensity of 𝐼0 = 1.36 × 1012 W cm−2 (corresponding to a peak field of 𝐸0 = 3.20 GV m−1)
is selected. We employ a cos2 temporal pulse profile as an approximation to a Gaussian profile,
leveraging its computational efficiency. Our objective is to model an experiment that can be
readily executed within a conventional HHG beamline setup, without necessitating specialized
equipment. To this end, the most accessible means for harmonic radiation detection is through



the utilization of a spectroscope equipped with a CCD camera. Consequently, we multiply each
HHG spectrum with a response function composed of a typical response curve of a grating and a
CCD camera, thereby constraining the range of observable harmonics. Details of this response
function are reported in the SM.

Using this numerical model, a HHG spectrum is simulated with ∼800 different CEP values
between ±0.5𝜋. The result is shown on Fig. 2a. After generating the simulated CEP-dependent
harmonic spectra, they are partitioned into two datasets through random selection. Eighty percent
of the data is allocated to the training dataset, while the remaining twenty percent is assigned
to the test dataset. The training dataset is employed to train an ExtraTree model, enabling the
recognition of patterns linking the spectrum to a specific CEP value. Subsequently, the trained
model processes both the spectra from the training and test datasets (the latter representing
previously unseen spectra), leveraging the learned patterns to estimate the corresponding laser
CEP. As anticipated, the estimated CEP values align perfectly with the training set (particularly
considering those data were used to train the model), as shown in Figure 2 b as orange rectangles.

The predictive accuracy of the model is determined by the relative square root of mean square
error between the true (CEP𝑡 ) and predicted (CEP𝑝) carrier-envelope phase values expressed in
percentages as

MSE% =

√√√
1

𝑁test

𝑁test∑︁
𝑖=1

(
CEP𝑡 ,𝑖 − CEP𝑝,𝑖

)2 · 100
𝜋

. (3)

When applying the model on the test set (blue circles), very good agreement is achieved
between the true and the estimated CEP values, with an MSE% of 0.06. The outcome proves our
assumption, that there is a one-to-one link between the harmonic spectrum and the CEP and this
can be captured with a machine learning model. The excellent agreement observed between the
true and estimated CEP values can be attributed in part to the extensive sampling of training data.
Nevertheless, acquiring a sufficient number of experimental data points may pose challenges in
practical scenarios. Generally, increased training data enhances model accuracy. Therefore, it
is important to discuss the effect of the number of training data (𝑁train) on the model accuracy
(MSE%) using the test data. Furthermore, in a general case, the data used for model training
is picked on randomly selected label values. This has the disadvantage of an uneven sampling
of the parameter space, which in turn results in a varying model accuracy over the parameter
range. However, in an experimental situation where the tag values are known to be within a
closed range, it is possible to provide the model with an evenly sampled training data.

To address this question, we train three different models (ExtraTree, Linear Regression and
GradiantBoosting) using a varying number of train data (𝑁train) and a fixed number of test data
(𝑁test). We have simulated a total of 800 solid HHG spectra corresponding to an input of an
equidistant CEP grid between −0.4𝜋 and 0.4𝜋 (in the simulation, because of the 1D model,
the CEP has 𝜋 periodicity, therefore we reduced the examined CEP range, to keep one-to-one
mapping). We used random sampling without replacement to select 𝑁train = 1 − 400 pairs and
for each 𝑁train case we selected in a similar manner 𝑁test = 150 and calculated the model’s
performance, shown in Figure 3 a. This random selection is performed 10 times for each 𝑁train
values. The model is trained using the selected 𝑁train HHG spectra, and then tested using the
𝑁test data points to estimate the CEP from spectra that was not known for the model before. The
MSE% quality parameter is then obtained by performing a linear fit on the predicted versus
actual CEP values of the test dataset.

Figure 3 presents a comparative result of this analysis of the effect of 𝑁train using randomly
(a) and equidistantly (b) picked CEP training data. Regarding the models, we can observe
similar trends in both cases. The ExtraTree model presents superior model accuracy in case of
low number of training data (𝑁train < 100), which can be attributed to the algorithm’s marked
resilience againist overfitting. However, the linear model, which is the least accurate in this
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Fig. 3. Comparative analysis of model predictive accuracy between a) random and b)
equidistant CEP sampling of the training data. The precision is given by the MSE% of
the linear fit on the prediction from 150 test datasets at randomly picked novel CEP
values. The random selection is done 10 times at each 𝑁train value allowing to give
error estimates to the predictions (shaded area on the plots). In both randomly and
evenly sampled CEP scenarios, the model performance with the test data is given on
the plots for 𝑁train = 100 for the ExtraTree model.

sparsely sampled regime, achieves superior accuracy in case of a densely sampled training data
(𝑁train > 200). This hints to the existence of a strong linear correlation between the CEP of
the laser and the features of the HHG spectra. The GradientBoosting method stays in-between
for small train sets, and performs comparatively poorly when a high number of training data is
available. As expected, in both sampling cases, at low number of training data the performance
improves exponentially (note the log-log plot) with the number of the training data, but around
𝑁train = 200 the prediction accuracy starts to saturate, indicating that additional training points
will not improve substantially the model’s precision.

It is also observed that the equidistant sampling (Figure 3 b) of the training data results in a
significantly improved accuracy in all cases, resulting in an increase of the accuracy by about an
order of magnitude, especially in the case of low (𝑁train < 200). This implies that the number of
required training data points for a given accuracy can be significantly reduced by performing a
methodical CEP sampling in the experimental case. The improvement is especially prominent in
case of the ExtraTree model since it gains an order of magnitude prediction performance in favor
of the evenly sampled scenario.

4. Experimental setup

The experiments were carried out using the MIR laser at ELI-ALPS [45]. The laser is operating
at 100 kHz repetition at 3.2 µm and capable to deliver 140 µJ of pulse energy. The measured
spectrum of the driving field can be seen in Figure S1 in the Supplementary document. The 45 fs
output pulses are spectrally broadened in BaF2 and Si optical windows and recompressed in bulk



BaF2 windows combined with three reflections on negative TOD dispersive mirrors to reach
18 fs pulse duration. The temporal profile of the pulse was measured by a TIPTOE device by
coupling out the beam before the off-axis parabolic mirror. The accurate CEP measurement and
control is crucial for this experiment, we used an f-2f setup called Fringeezz by Fastlite which is
controlling the acousto-optic programmable dispersive filter (AOPDF, Dazzler, Fastlite) in the
OPCPA front-end in a closed loop. The device is able to measure CEP values shot-to-shot at 10
kHz, while the laser is capable to deliver 100 mrad CEP stability. We generate high harmonics in
a 90 µm thick ZnO crystal by focusing 1.3 µJ pulses using an off axis parabola with 100 mm focal
length. The resulting intensity for the compressed pulses was 1.3·1012 W/cm2, by introducing
chirp we lowered this intensity to 6.6·1011 W/cm2. After solid HHG, a thick 50 mm long BK7
bulk filters out the MIR driving beam and transmits the harmonics, but cuts off radiation below
350 nm. Subsequently, the remaining visible range of the harmonic spectrum is imaged into a
commercial spectrometer (AvaSpec-ULS2048 from Avantes). In this configuration we were able
to measure from harmonic order 3 to harmonic order 9. During the measurement we recorded
100 spectra for each CEP settings and used the average of these during the analysis, as shown in
Figure 4 a. The CEP scan was recorded between -𝜋 and 𝜋 having 100 evenly distributed CEP
values in between. The spectrum for each CEP value is normalized in this plot.
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Fig. 4. Experimental CEP scan in ZnO performed with a 18 fs, 0.13 W, 3.2 µm laser
(a). The performance of the ExtraTree machine learning algorithm on estimating the
measured relative laser CEP using (b) 80% train (orange rectangles), 20% test (open
blue circles); (c) evenly while (d) randomly sampled 50% train and 50% test datasets.
The slope of each prediction scenario lies very close to 45◦, representing almost perfect
estimating capabilities, with MSE% values on the test sets: (b) 0.75, (c) 0.61, (d) 1.15.

The fringe pattern extending over the NIR region on the harmonic spectrum on Figure 4 is
solely due to interference of harmonics generated from the front and the rear side of the ZnO
crystal [23] and is therefore independent of the CEP. However, the harmonic spectrum expresses
harmonic minima at different CEP values, which is the result of constructive and destructive
interference between the XUV bursts generated in consecutive laser half cycles [32, 34].

Direct comparison between simulation and experimental data is not straightforward, because



on one hand, in simulation the CEP is expressed in absolute terms, while in experiment it is
relative. On the other hand, the simulation does not take into account the complexity of the
experimental conditions, and the 1D model cannot be expected to reproduce neither 3D symmetry
properties of the real crystal, nor propagation-related effects, like phase matching. However, the
spectral minima shift as the function of CEP is visible in both simulations and experiments. It is
known that the extent of CEP sensitivity has dependence on the instantaneous structural changes
in the laser-induced lattice, which is not taken into our simulations, thereby possibly causing
some difference in features. Furthermore, it is important to note that the CEP scan confirms
a one-to-one mapping between the CEP and the related spectra, as required for the machine
learning model to work.

We split the experimentally recorded data in Figure 4 b into train (80%) and test (20%)
randomly selecting into these datasets and present the performance of a trained ExtraTree model
in estimating the laser’s CEP from the input spectra. The orange rectangles represent the CEP
predictions using the spectra from the train data set, showing perfect agreement between the
predicted and the true laser CEP. The blue circles present the performance of the model on
the previously unseen test data, indicating that the model is well trained to recognize spectral
patterns in the solid HHG spectrum to estimate the laser CEP correctly with an MSE% = 0.75.
The only major discrepancy between the estimated and the true CEP is where there is a gap in the
sampling in the train data set (around 𝜋 rad in the figure). This issue can be overcome by evenly
sampling the training dataset, as described in Figure 3 b. To visualize this effect we resample our
dataset into 50% train and 50% test with evenly and randomly sampled input CEP values, as
shown in Figure 4 c and d, respectively. As expected, the evenly sampled scenario (MSE% =
0.61) is outperforming the randomly sampled case (MSE% = 1.15) by a factor of 2 in estimating
the CEP of the laser from the harmonic spectra. These outcomes clearly prove that our concept
for CEP estimation works and could be used for monitoring laser CEP during experiments. They
also highlight that good model performance can be only achieved if the training CEP values are
evenly sampled with small step size.

5. Conclusion and outlook

In conclusion, we have laid out a conceptual scheme for estimating MIR laser CEPs relying on the
spectrum of high order harmonics generated from a solid crystal exploiting the ability of complex
pattern recognition of a machine learning model. Furthermore, we demonstrated the applicability
of this concept both through theoretical simulations and experimental measurements. This proven
scheme offers an economic, instrumentally not demanding option to measure the laser CEP. The
concept can be generalized to other laser wavelength, assuming that the combination of the laser
and the crystal fulfills the requirements of one-to-one mapping of the CEP to the solid HHG
spectrum and the existence of 2𝜋 periodicity. Furthermore, in principle it is possible to perform
single shot recordings of the harmonic spectrum with a sampled beam (only 1% of the total
energy was used) while an experiment is carried out with the remaining beam. In case of random
CEP laser source, the latter approach will allow CEP tagging.

The current study relies on a reference method as implimented in a fast CEP measurement
device, Fringeezz by FastLight, to train the ML model. However with more accurate modelling
the simulated and experimental CEP scans could match better, meaning simulations could be a
tool to train the ML model, as it was done in [27] for FROG scans. Additional benefit of such
simulation would be to retrieve the absolute CEP of the laser, since in simulations it is an input
parameter. It is important to notice that this study implies a fixed laser intensity for the training
and for subsequent actual measurements and CEP retrieval. The question arises then whether
intensity variations would ruin the process. Initial investigations have been carried out that show
the ability of the machine learning to recover CEP values from various field configurations and
intensities. However, in-depth study of the sensitivity to intensity fluctuations is ongoing.



Overall, our proposed protocol, combined with precise simulations, opens up the route towards
multi-parameter estimation and optimization using machine learning concepts, as it has been
already proposed by [26, 28, 29]. Solid HHG is a process, where the laser parameters and the
material features have a direct manifestation in the measured spectrum, resulting in an economic
and adaptable tool for monitoring experimental conditions. Therefore we utilize HHG signal
from semiconducting ZnO crystal in MIR regime to infer the CEP, based on ML models trained
with combined experimental and simulations results. Our findings demonstrate the effectiveness
of the ExtraTree-based models for predicting the one-to-one correlation between CEP and HHG
spectra. Our approach can prove instrumental in determination and control of laser parameters,
such as intensity, CEP in-situ depending on the target material, prior to an advanced HHG based
experiment design. While it is possible to infer CEP from spectral measurement, this usually
needs extended data acquisition. Our method achieves the same with significantly less number
of measurements, thereby being of prominent use towards reducing cost of running experiment
campaign, as relevant for large-scale user facilities like ELI ALPS.
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