20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

Long-wave Infrared Computational Multispectral
Metasurface and Spectral Reconstruction Method

SHANG WANG,"! LIDAN LU,2 AND LIANQING ZHU3""

ISchool of Instrument Science and Opto-Electronics Engineering, Beijing Information Science and
Technology University, Beijing, 100192, China

‘opex@optica.org

Abstract: We designed a computational multispectral metasurface based on photonic crystals.
The study results show that in the 8-11.5um wavelength range, the 3x3 photonic crystal array
structure exhibits an average transmittance correlation of 0.17, with peak transmittance values
ranging from 62.5% to 89.1% and an average energy utilization rate of 32.65% and 49.37%.
Additionally, to evaluate the spectral reconstruction performance of the transmission spectra
under different photonic crystals, a spectral reconstruction deep learning network was constructed
with the mean squared error is 1.292x1073. This establishes a foundation for future integration on
superlattice detectors, aimed at enhancing device integration, reducing system power consumption,
and lowering costs.

1. Introduction

Multispectral detection technology integrates the advantages of spatial imaging and spectral
detection, utilizing multiple spectral bands to detect and analyze camouflaged objects. This
technology effectively distinguishes targets from their backgrounds [1], significantly enhancing
detection accuracy and operational effectiveness in military and security environments [2].
Meanwhile, long-wave infrared(LWIR) detection offers strong atmospheric penetration and
superior capabilities for identifying camouflaged targets [3]. Superlattice infrared detectors are
gaining considerable attention due to their ability to achieve large-format arrays, high spatial
resolution, broad spectral response. Therefore, integrating multispectral metasurfaces onto
superlattice infrared detector platforms is a promising choice.

Some reports indicate that the majority of computational multispectral metasurfaces for broad-
spectrum detection operate in the visible light range, such as quantum dot arrays [4], photonic
crystal slab arrays [5], [6], and freeform shaped meta-atoms [7]. In contrast, multispectral filters
predominantly employ narrowband filtering metasurfaces [8], [9], which can operate at the cost
of time, space, or energy efficiency. Photonic crystals exhibit periodic potentials to incident
electrons, and light modulation is achieved by adjusting the constituent materials and geometry of
photonic crystals. Micro-spectrometers based on photonic crystals have been integrated on-chip
in the visible light range [10], but there are few studies in the LWIR range.

Based on computational spectral demodulation at specific bands, real-time multispectral
characteristics can be obtained. Studies have shown that combination of random transmission
spectra with spectral information processing algorithms such as least squares [11], CS theory [12],
or deep learning [13]can provide highly accurate spectral recognition capabilities. Compared
with spectral reconstruction algorithms based on least squares minimization, the main advantage
of deep learning methods is the ability to handle large amounts of complex nonlinear data.

In this Letter, we introduce a computational multispectral metasurface based on photonic
crystals operating in the LWIR band and a new spectral reconstruction deep learning network.
Simulation analyses of photonic crystal parameters. An optimized 3x3 photonic crystal array
structure was achieved through design optimization, with higher average energy utilization rates.
Meanwhile, using computational algorithms based on deep learning, the spectral information can
be accurately reconstructed.
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Fig. 1. Schematic diagram of a multispectral metasurface composed of a 3x3 photonic
crystal array. (a-b) The 3x3 photonic crystal slab and incident light modulation. (c-d)
The photonic crystal array and and transmission spectrum.

2. METHODS

Design a schematic of a 3x3 photonic crystal array as shown in Fig. 1. The material selection for
the photonic crystal medium substrate emphasizes high transmittance, specifically using GaSb
material. As shown in Fig. 1(a,b), during the simulation, the blue parts on the top and bottom
layers represent air, while the middle layer consists of a photonic crystal slab made up of a 3x3
array of photonic crystals of varying sizes where the photonic crystal lattice constant ranges
from 3.6 to 12 pm, the hole radius ranges from 0.7 to 2.1 pm, and the thickness is 1.89 pm.
Rigorous Coupled Wave Analysis (RCWA) is used to simulate the electromagnetic field in the
entire three-dimensional structure, obtaining the wavelength response performance influenced by
different hole sizes, spacings, and metal thicknesses, and calculating the transmission spectrum
of the structure. Incorporate the obtained transmission spectra into the Pearson correlation
coefficient calculation to determine the structural parameters with lower correlation coefficients.
The photonic crystal array with lattice constant and pore radius of a = 4.4 pm, r = 0.89 nm and
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its transmission spectrum are shown in Fig. 1(c.d) .

The 3%3 photonic crystal array exhibits nine different transmission spectra in the wavelength
range of 8-11.5 um, as shown in Fig. 2. To calculate the energy utilization rate of the transmission
spectrum for different photonic crystal arrays, the total energy within a specific wavelength
range can be determined from the spectral data. The results show that the area enclosed by the
transmission spectra and the wavelength axis, representing the energy utilization rate, ranges
from 21.4% to 47.2%, with an average of 32.7%. The absolute value scatter of the correlation
coefficients for photonic crystal arrays is shown in the right panel of Fig. 3. The left panel of Fig.
3 presents a heatmap of the correlation coefficients, with the axes representing different photonic
crystal arrays. The mean absolute value of the correlation coefficients between photonic crystal
arrays is 0.1697, with the maximum value being 0.3315.

We design an incident spectrum in the wavelength range of 8-11.5 pm composed of multiple
random Gaussian functions. The actual spectrum detection simulation also needs to consider
experimental noise, which is modeled here as Gaussian white noise. Using a BP (Back
Propagation) neural network, the reconstructed spectrum is obtained. This architecture includes

11

9 10
Wavelength(um)

Fig. 2. Transmission spectra of 9 different photonic crystal groups.

0.0015-

c|033 0.059- . . "5
d|o2r 013 0.27 .
-0.077 -0.13 0.1 0.25 ' Photonic Crystal Arrangement
0.15 1033 0.087 0.33 -0.002.

0.5 -0.06 0.015 0.078 -0.14 0.23 .

R.9E-4 0.3 -0.021 0.18 [0.29 0.29 -0.26-

(o

Correlation Coefficient

= 0 - O

—-

02 0.083 -0.21 -029 029 03 -0.011 -0.25-
a b ¢ d e f g h i

Fig. 3. Pearson Correlation Coefficients between Different Photonic Crystals.
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Fig. 4. Schematic Diagram of the Neural Network Architecture for Reconstructed
Spectrum Evaluation.
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Fig. 5. Deep Learning Results for Photonic Crystal Arrays: (a-c) the loss function
curve, the statistical distribution of test set samples within different MAE ranges, and
the MAE between the true spectrum and the reconstructed spectrum.

a training and testing dataset of N = 5000 incident spectra. In Fig. 6,the BP architecture is as
follows: 201-LR-LL-400-LR-LL-600-LL-201-LL-9-LL-200-LR-LL-800-LR-LL-601, where LL
represents a linear layer, LR denotes the leaky rectified linear unit. The formula for spectrum
reconstruction is as follows:

1 N
E = / LI +ndd ~ 3 T In(A) +n dd ()
X =

Where In() is the incident spectrum, 7; (1) is the transmission matrix, n; represents experimental
noise, and A, to A; ranges from 8 to 11.5 pm, N is the number of points (201), and k is the
number of different transmission matrices (9). The loss function is:

loss =" ||E = TIn||3 + k ||n:In]|3 . )

After training and testing cycles, the loss values for the training and testing datasets were
reduced to 1.292x1073 and 1.233x1073, respectively. The statistical distribution of mean
absolute error (MAE) and loss function value of the reconstructed spectra and actual spectra of
different photonic crystal arrays were calculated. The low loss values indicate that the training
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process of Bp performed well in Fig. 7(a). After training, the specific error distribution of the
test dataset was analyzed. As shown in Fig. 7(b), it can be seen that most sample data have
an MAE error below 0.08, with only 1.4% of the dataset samples having an MAE exceeding
0.05. The mean squared error (MSE) of the test dataset is 1.292x10~3, corresponding to a mean
absolute error MAE=1/k Zf:l (In; - E)2) of 0.0134 in Fig. 7(c). Among them, I; represents the
reconstructed spectrum. If an MAE < 0.05 indicates high prediction accuracy, then the prediction
accuracy of Bp is 98.6%. The results indicate that the MAE statistical distribution is well-formed.

3. Conclusions

A new design with reconstruction algorithm for a multispectral metasurface operating in the
long-wave infrared range of 8-11.5 pm has been proposed. Suitable structural parameters
were screened based on the correlation coeflicient, and the transmission matrix was fed into
the reconstruction neural network. The reconstruction errors after training in the region of
[1.292x1073~1.233x1073], with average energy utilization rates of approximately 32.7% to
49.37%. Deep neural networks, as a data prediction method, significantly improves design
efficiency and computational resources. Our results also demonstrate that this design can achieve
the purpose of optimizing random multispectral metasurfaces.
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