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Abstract: We designed a computational multispectral metasurface based on photonic crystals.7

The study results show that in the 8-11.5µm wavelength range, the 3×3 photonic crystal array8

structure exhibits an average transmittance correlation of 0.17, with peak transmittance values9

ranging from 62.5% to 89.1% and an average energy utilization rate of 32.65% and 49.37%.10

Additionally, to evaluate the spectral reconstruction performance of the transmission spectra11

under different photonic crystals, a spectral reconstruction deep learning network was constructed12

with the mean squared error is 1.292×10−3. This establishes a foundation for future integration on13

superlattice detectors, aimed at enhancing device integration, reducing system power consumption,14

and lowering costs.15

1. Introduction16

Multispectral detection technology integrates the advantages of spatial imaging and spectral17

detection, utilizing multiple spectral bands to detect and analyze camouflaged objects. This18

technology effectively distinguishes targets from their backgrounds [1], significantly enhancing19

detection accuracy and operational effectiveness in military and security environments [2].20

Meanwhile, long-wave infrared(LWIR) detection offers strong atmospheric penetration and21

superior capabilities for identifying camouflaged targets [3]. Superlattice infrared detectors are22

gaining considerable attention due to their ability to achieve large-format arrays, high spatial23

resolution, broad spectral response. Therefore, integrating multispectral metasurfaces onto24

superlattice infrared detector platforms is a promising choice.25

Some reports indicate that the majority of computational multispectral metasurfaces for broad-26

spectrum detection operate in the visible light range, such as quantum dot arrays [4], photonic27

crystal slab arrays [5], [6], and freeform shaped meta-atoms [7]. In contrast, multispectral filters28

predominantly employ narrowband filtering metasurfaces [8], [9], which can operate at the cost29

of time, space, or energy efficiency. Photonic crystals exhibit periodic potentials to incident30

electrons, and light modulation is achieved by adjusting the constituent materials and geometry of31

photonic crystals. Micro-spectrometers based on photonic crystals have been integrated on-chip32

in the visible light range [10], but there are few studies in the LWIR range.33

Based on computational spectral demodulation at specific bands, real-time multispectral34

characteristics can be obtained. Studies have shown that combination of random transmission35

spectra with spectral information processing algorithms such as least squares [11], CS theory [12],36

or deep learning [13]can provide highly accurate spectral recognition capabilities. Compared37

with spectral reconstruction algorithms based on least squares minimization, the main advantage38

of deep learning methods is the ability to handle large amounts of complex nonlinear data.39

In this Letter, we introduce a computational multispectral metasurface based on photonic40

crystals operating in the LWIR band and a new spectral reconstruction deep learning network.41

Simulation analyses of photonic crystal parameters. An optimized 3×3 photonic crystal array42

structure was achieved through design optimization, with higher average energy utilization rates.43

Meanwhile, using computational algorithms based on deep learning, the spectral information can44

be accurately reconstructed.45



Fig. 1. Schematic diagram of a multispectral metasurface composed of a 3×3 photonic
crystal array. (a-b) The 3×3 photonic crystal slab and incident light modulation. (c-d)
The photonic crystal array and and transmission spectrum.

2. METHODS46

Design a schematic of a 3×3 photonic crystal array as shown in Fig. 1. The material selection for47

the photonic crystal medium substrate emphasizes high transmittance, specifically using GaSb48

material. As shown in Fig. 1(a,b), during the simulation, the blue parts on the top and bottom49

layers represent air, while the middle layer consists of a photonic crystal slab made up of a 3×350

array of photonic crystals of varying sizes where the photonic crystal lattice constant ranges51

from 3.6 to 12 µm, the hole radius ranges from 0.7 to 2.1 µm, and the thickness is 1.89 µm.52

Rigorous Coupled Wave Analysis (RCWA) is used to simulate the electromagnetic field in the53

entire three-dimensional structure, obtaining the wavelength response performance influenced by54

different hole sizes, spacings, and metal thicknesses, and calculating the transmission spectrum55

of the structure. Incorporate the obtained transmission spectra into the Pearson correlation56

coefficient calculation to determine the structural parameters with lower correlation coefficients.57

The photonic crystal array with lattice constant and pore radius of a = 4.4 µm, r = 0.89 µm and58



its transmission spectrum are shown in Fig. 1(c,d) .59

The 3×3 photonic crystal array exhibits nine different transmission spectra in the wavelength60

range of 8-11.5 µm, as shown in Fig. 2. To calculate the energy utilization rate of the transmission61

spectrum for different photonic crystal arrays, the total energy within a specific wavelength62

range can be determined from the spectral data. The results show that the area enclosed by the63

transmission spectra and the wavelength axis, representing the energy utilization rate, ranges64

from 21.4% to 47.2%, with an average of 32.7%. The absolute value scatter of the correlation65

coefficients for photonic crystal arrays is shown in the right panel of Fig. 3. The left panel of Fig.66

3 presents a heatmap of the correlation coefficients, with the axes representing different photonic67

crystal arrays. The mean absolute value of the correlation coefficients between photonic crystal68

arrays is 0.1697, with the maximum value being 0.3315.69

We design an incident spectrum in the wavelength range of 8-11.5 µm composed of multiple70

random Gaussian functions. The actual spectrum detection simulation also needs to consider71

experimental noise, which is modeled here as Gaussian white noise. Using a BP (Back72

Propagation) neural network, the reconstructed spectrum is obtained. This architecture includes73

Fig. 2. Transmission spectra of 9 different photonic crystal groups.

Fig. 3. Pearson Correlation Coefficients between Different Photonic Crystals.



Fig. 4. Schematic Diagram of the Neural Network Architecture for Reconstructed
Spectrum Evaluation.

Fig. 5. Deep Learning Results for Photonic Crystal Arrays: (a-c) the loss function
curve, the statistical distribution of test set samples within different MAE ranges, and
the MAE between the true spectrum and the reconstructed spectrum.

a training and testing dataset of N = 5000 incident spectra. In Fig. 6,the BP architecture is as74

follows: 201-LR-LL-400-LR-LL-600-LL-201-LL-9-LL-200-LR-LL-800-LR-LL-601, where LL75

represents a linear layer, LR denotes the leaky rectified linear unit. The formula for spectrum76

reconstruction is as follows:77

𝐸𝑖 =

∫ 𝜆2

𝜆1

𝑇𝑖 (𝜆)𝐼𝑛(𝜆) + 𝑛𝑖 𝑑𝜆 ≈
𝑁∑︁
𝑗=1

𝑇𝑖 (𝜆 𝑗 )𝐼𝑛(𝜆 𝑗 ) + 𝑛𝑖 𝑑𝜆. (1)

Where 𝐼𝑛(𝜆) is the incident spectrum, 𝑇𝑖 (𝜆) is the transmission matrix, 𝑛𝑖 represents experimental78

noise, and 𝜆2 to 𝜆1 ranges from 8 to 11.5 µm, N is the number of points (201), and k is the79

number of different transmission matrices (9). The loss function is:80

𝑙𝑜𝑠𝑠 =𝑚𝑖𝑛
𝐼𝑛 ∥𝐸 − 𝑇 𝐼𝑛∥2

2 + 𝑘 ∥𝑛𝑖 𝐼𝑛∥2
2 . (2)

After training and testing cycles, the loss values for the training and testing datasets were81

reduced to 1.292×10−3 and 1.233×10−3, respectively. The statistical distribution of mean82

absolute error (MAE) and loss function value of the reconstructed spectra and actual spectra of83

different photonic crystal arrays were calculated. The low loss values indicate that the training84



process of Bp performed well in Fig. 7(a). After training, the specific error distribution of the85

test dataset was analyzed. As shown in Fig. 7(b), it can be seen that most sample data have86

an MAE error below 0.08, with only 1.4% of the dataset samples having an MAE exceeding87

0.05. The mean squared error (MSE) of the test dataset is 1.292×10−3, corresponding to a mean88

absolute error (MAE=1/𝑘 ∑𝑘
𝑖=1 (𝐼𝑛𝑖 − 𝐼̃𝑖)2) of 0.0134 in Fig. 7(c). Among them, 𝐼̃𝑖 represents the89

reconstructed spectrum. If an MAE < 0.05 indicates high prediction accuracy, then the prediction90

accuracy of Bp is 98.6%. The results indicate that the MAE statistical distribution is well-formed.91

3. Conclusions92

A new design with reconstruction algorithm for a multispectral metasurface operating in the93

long-wave infrared range of 8-11.5 µm has been proposed. Suitable structural parameters94

were screened based on the correlation coefficient, and the transmission matrix was fed into95

the reconstruction neural network. The reconstruction errors after training in the region of96

[1.292×10−3∼1.233×10−3], with average energy utilization rates of approximately 32.7% to97

49.37%. Deep neural networks, as a data prediction method, significantly improves design98

efficiency and computational resources. Our results also demonstrate that this design can achieve99

the purpose of optimizing random multispectral metasurfaces.100
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