Postoperative intraocular lens tilt from
preoperative full crystalline lens geometry
using machine learning
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Abstract: In cataract surgery, the opacified crystalline lens is replaced by an artificial
intraocular lens (IOL), requiring precise preoperative selection of parameters to optimize
postoperative visual quality. Three-dimensional customized eye models, which can be
constructed using quantitative data from anterior segment optical coherence tomography,
provide a robust platform for virtual surgery. These models enable simulations and predictions
of the optical outcomes for specific patients and selected 10L. A critical step in building these
models is estimating the I0L’s tilt and position preoperatively based on the available
preoperative geometrical information (ocular parameters). In this study, we present a machine
learning model that, for the first time, incorporates the full shape geometry of the crystalline
lens as candidate input features to predict the postoperative IOL tilt. Furthermore, we identify
the most relevant features for this prediction task. Our model demonstrates significantly lower
estimation errors compared to a simple linear correlation method and a state-of-the art approach
that excludes full shape crystalline lens features, reducing the estimation error by approximately
5% compared to the latter. These findings highlight the potential of this approach to enhance
the accuracy of postoperative predictions, paving the way to improve visual outcomes in
cataract patients.

© 2024 Optica Publishing Group under the terms of the Optica Publishing Group Open Access Publishing
Agreement
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1. Introduction

Accurate quantification of anterior segment geometry in the human eye plays an important
role in various clinical and surgical applications, such as cataract surgery planning, refractive
surgery, contact lens fitting, and the diagnosis of corneal conditions such as keratoconus.
Geometrical measurements of the cornea or/and crystalline lens have been reported using
Placido ring-based systems [1], Purkinje imaging [2, 3] , Scheimpflug imaging [1, 4, 5],
ultrasound biomicroscopy [6], Magnetic Resonance Imaging [7, 8], and Optical Coherence
Tomography (OCT) [9-11]. OCT, in particular, has gained popularity due to its high resolution,
fast acquisition times, patient comfort, and wide clinical availability [12, 13]. It allows for the
non-invasive visualization of both the cornea [11] and the crystalline lens [9, 10]. Once OCT
images are corrected for fan, optical, and motion distortions, they provide the detailed structural
data necessary for building three-dimensional (3-D) models of the anterior segment of the eye.
These 3-D models enable clinicians to assess the impact of the shape of the ocular components
and their relative alignment on the eye’s optical quality. These evaluations are particularly
valuable in understanding ocular conditions, such as myopia [14, 15], keratoconus [16], and the
outcomes of cataract surgery [17-19].

The use of customized 3-D eye models has proven to be a significant advancement in the
selection of intraocular lenses (I0OLs) for cataract surgery, where the proper selection of 10L
power is crucial for achieving optimal postoperative vision. One of the primary sources of error
in IOL power calculations is the estimation of the IOL position (also known as the Estimated
Lens Position (ELP), [20]). The complete quantification of the anterior segment, including the
full geometry of the crystalline lens, has been shown to improve ELP predictions, leading to
better surgical outcomes [17-19]. Beyond IOL position, 10L tilt and decentration are also
relevant factors that could negatively impact the optical performance of the eye after cataract
surgery, which may be particularly critical for specialized IOL designs such as aspheric, toric,
or multifocal. Excessive amounts of tilt and decentration, generally resulting from a
complicated surgery, can affect the visual quality by causing distortions, glare, and asymmetric
optical aberrations. Increased tilt in a hinged haptic IOL platform, for example, has been
associated with abnormal amount of coma [21, 22].

In addition to improving 1OL power calculations, 3-D eye models offer a powerful tool for
virtual surgery, enabling clinicians to simulate and predict the optical outcomes of cataract
surgery with greater accuracy and precision [17]. These models integrate estimations of the
IOL position and tilt, along with the geometric and optical properties of the IOL design, into
the 3-D optical model of the eye. This enables the application of ray tracing, which simulates
the passage of light through the eye, including the implanted 10OL. Ray tracing facilitates the
simulation of the optical degradation of the images projected on the retina for various powers
of the same 10L model and for different IOL designs, such as aspheric, multifocal, and toric
I0Ls. By offering such detailed simulations, 3-D models can help clinicians to select the
optimal IOL for individual patients, moving beyond the reliance on approximated formulas.

In earlier work, Rosales et al. and de Castro et al. [3, 23] used custom developed Purkinje
imaging and/or Scheimpflug imaging, and Sun et al. [24] used a laboratory developed OCT to
study the IOL tilt and decentrations in pseudophakic eyes. Recently, the use of images from
commercial OCT-based systems, such as the IOLMaster 700 (Carl Zeiss Meditec, Germany),
has allowed easier access to a much large number of patients and the study of the relationship
between the tilt of the natural crystalline lens measured preoperatively and the postoperative
IOL tilt in the same patients [25-28]. Firstly, Hirnschall et al. [26] studied the correlation
between pre and postoperative tilt in 62 patients implanted with the same 10L. Then, Wang et
al. [25] extended the work to 333 patients (65 pre and postoperatively), studying the
repeatability, mirror symmetry between left and right eyes, and some correlations between tilt
magnitude and ocular parameters, concluding that magnitude of crystalline lens tilt
significantly increased with decreasing axial length and with increasing angle alpha. The
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inverse correlation between crystalline lens tilt magnitude and axial length was also supported
by Lu et al. [28] in a study on 131 emmetropic and 121 myopic eyes. Recently, Machine
Learning (ML) models have been explored to study more complex relationships between
preoperative ocular geometry and postoperative IOL tilt. In 2024, Waser et al. [27] presented a
partial least squares regression and an ML approach to predict 1OL tilt using preoperative
biometry data in 50 eyes. This study concluded that the most important features for predicting
the 1OL tilt magnitude were preoperative tilt magnitude, pupil decentration, lens thickness and
axial length.

The IOL is implanted within the capsular bag, and thus it is expected that the position and
orientation of the 10OL will be affected by the full size and shape of the crystalline lens as
mechanical iterations between the capsular bag and the 10L haptics occur in the equatorial
region of the bag. Nevertheless, none of the previous works have incorporated the full shape
geometry of the crystalline lens as a potential factor influencing 1OL tilt. Optical methods such
as OCT obstruct views of the crystalline lens beyond the pupil margin and therefore the
quantification is restricted to the visible area. Alternative methods allowing view of the full
lens include ultrasound bio-microscopy and MRI, but these are less accessible in clinic than
OCT, and require more cooperation from the patient and/or skill by the operator. We have
previously presented a technique that allows realistic extrapolation of the crystalline lens full
shape beyond the pupil, and a compact representation of this shape by the so-called eigenlenses
[29-31]. The current study presents a method that applies machine learning algorithms to
predict postoperative IOL tilt based on preoperative features in a large dataset of patients (476
eyes from 4 different sites and several IOL models implanted). The model includes, for the first
time to the best of our knowledge, the information of the crystalline lens full shape. A large
series of candidate input features (both geometrical and clinical) were considered, and the
model analyzed their relative importance to improve the prediction. Then, we trained a specific
tilt estimator using the selected features. We demonstrated that this method outperforms the
estimation results from linear correlations and from the method proposed in [27], showing an
improvement in overall performance.

2. Methods
2.1 Patients, surgery and clinical measurements

A total of 476 eyes from 346 patients (age mean + standard deviation = 70 + 11 years old)
were measured before and after standard cataract surgery (4.6 = 4.7 months from surgery).
Patients were implanted with one of the IOL models listed in Supplementary Table 1. The most
frequently implanted 10Ls were Acrysof (Alcon, n=73), Clareon (Alcon, n=227), enVista
(B&L, n=21), Tecnis (J&J, n=77), Sensar (J&J, n=10), and FH5600 (Aurolab, n=21). The
surgeries were performed at four different hospitals: 1) Flaum Eye Institute, University of
Rochester, Rochester, NY, United States (n=68); 2) Department of Ophthalmology, Baylor
College of Medicine, Houston, TX, United States (n=115); 3) Ophthalmology Department,
Fundacion Jiménez Diaz University Hospital, Madrid, Spain (n=200); 4) LV Prasad Eye
Institute, Hyderabad, India (n=93). IOL power implanted ranged from +36 D to -5 D.

The final sample for the study included 356 eyes from 259 patients (age mean * standard
deviation =70 £ 11 years old, ranging from 24 to 92 years old; preoperative spherical equivalent
mean + standard deviation = -0.80 + 3.51 D, ranging from -26 D to 9 D).

From the initial 476 measured eyes, images from 8 eyes were not useful (mostly because
the posterior surface of the crystalline lens or the I0OL surfaces were not visible) and thus were
discarded. Also, 4 eyes were discarded because of lack of compliance of full crystalline lens
shape estimation and 3-D model construction (see Section 2.4 for details on model construction
and full shape estimation). Additionally, measurements with pupils smaller than 3 mm were
discarded (n=96). The reason of discarding eyes with small pupils is discussed the Discussion
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Section. Finally, from the remining 368 eyes, 12 eyes were discarded because they were
considered outliers in the correlations and/or polar plots shown in Sections 3.1 and 3.2. Some
possible clinical reasons for being outliers are discussed in the Discussion Section. Our analysis
was thus performed on 356 eyes from 259 patients.

The study met the tenets of the Declaration of Helsinki. Ethical approval was granted by
the Ethics Committee of Consejo Superior de Investigaciones Cientificas (CSIC), Fundacion
Jiménez Diaz, University of Rochester Medical Center, Baylor College of Medicine, and LV
Prasad Eye Institute. Written informed consent was obtained from the patients after detailed
explanation of the procedure.

2.2 Overview of the solution

Figure 1 shows a schematic diagram of the methodology to estimate the postoperative (10L)
tilt from preoperative features. 3-D geometrical models are constructed from the preoperative
OCT images of the patient’s eye, including the full shape of the crystalline lens obtained with
our proposed eigenlenses method [30, 31]. Geometrical features are obtained from these 3-D
models (quantification), which along with clinical features, feed a Feature Selection and
Machine Learning algorithm.

Similarly, 3-D models are constructed from the postoperative OCT images of the same
patients, and the 1OL tilt is measured (magnitude and direction, as defined in [26] and in Section
2.5). Postoperative tilt is used as ground truth in training the machine learning algorithm.

INPUT FEATURES

[OCT IMAGES | | 3D MODEL
CONSTRUCTION

QUANTIFICATION (OCT BASED

| CLINICAL FEATURES

GEOMETRIC FEATURES)
* Anterior Chamber Depth (ACD)  * Gender
* Vitreous Chamber Depth (VCD) = Age
* Crystalline Lens Thickness (LT) = Laterality
* Crystalline lens tilt (Ltilt) * 10L Model
+ Axial Length ¢

+ Lens Radii of Curvature (RAL
and RPL)

« Crystalline lens full shape
features (VOL, DIA...)

v

Kl Learning algorithm k

=== -
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Fig. 1. Flow chart of the methodology to estimate the IOL tilt from preoperative measurements, that includes the 3-D
model construction, quantification (for obtaining the geometrical features and the ground truth that will feed the
machine learning algorithm) and feature selection/learning processes.

In the 3-D model construction, the anterior surface of the cornea (blue), posterior surface of the cornea (red), anterior
surface of the crystalline lens/IOL (yellow), and posterior surface of the crystalline lens/IOL (purple) are represented.
In the preoperative models, the full shape of the crystalline lens is also shown (black).
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2.3 Optical coherence tomography imaging

OCT images of the anterior segment of the eye were acquired before and after cataract
surgery with a commercial swept-source OCT system, the IOLMaster 700 (Carl Zeiss Meditec
AG, Jena, Germany). The IOLMaster 700 operates at a speed of 2000 A-scans/s, at 1055 nm,
with a 44.0 mm scan depth and 22 um axial resolution in tissue [26, 32]. The horizontal
scanning range is 6 mm. The IOLMaster 700 acquires six meridional B-scans at 30-deg steps,
thus providing 3-D information. Figure 2 shows examples of cross-sectional meridians of the
eye of a patient before (top) and after (bottom) the surgery.

Fig. 2. Preoperative (top) and postoperative (bottom) IOLMaster 700 OCT images (meridian at 300°, OD, Female, 90
years old), showing the crystalline lens and the implanted I0L (Clareon CNAQOTO by Alcon, 23.5 D) respectively.

2.4 3-D eye model construction

Figure 3 illustrates the process to obtain the 3-D eye models from the OCT images, which
involves [33]: (1) preprocessing of the images and automatic segmentation of the surfaces of
interest (i.e., anterior and posterior surfaces of the cornea and crystalline lens and retina), using
our deep learning segmentation algorithm proposed in [33]; (2) 3-D model construction,
including conversion from pixels to millimeters using calibration data, correction of the optical
distortion, and registration, transforming the data from the six meridians into a single coordinate
system to obtain the 3-D model within the pupil; (3) crystalline lens full shape estimation from
data corresponding to the central part visible through the pupil, using the eigenlenses method
[30, 31] (only for preoperative measurements). Briefly, eigenlenses represent the most common
“deformation patterns” that can be found in a training set of 133 isolated crystalline lenses, with
respect to the average lens shape. Thanks to the richness of the training set (that includes lenses
of ages ranging from 0 to 71 y/0), eigenlenses can represent efficiently the human crystalline
lens shapes that can be found in nature. The first eigenlens (weighted by the a, coefficient the
most “common” deformation) describes changes in the size of the lens, while the second
eigenlens (a, coefficient) describes changes in the aspect ratio (i.e., lenses more “stretched” or
rounded). The third and fourth eigenlenses (a5 - a, coefficients) are related with asymmetric
changes in X or Y directions, and the fifth and sixth (as - a4 coefficients) with fine changes in
the shape of the surfaces. The eigenlenses representation is compact, needing only 6 coefficients
(ay - ag) to capture 96% of the variance in shape of the training set of lenses. Thanks to this
compaction ability, eigenlenses are useful to estimate the full shape of the lens in vivo from its
central part visible through the pupil [30, 31].
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Fig. 3. Preoperative 3-D eye model construction. Surface segmentation, distortion correction, and registration were
performed to generate 3-D models of the eye. The full shape of the crystalline lens was estimated using the eigenlenses
method [30, 31]. The processes for obtaining 3-D postoperative models are the same, excluding the full shape
estimation of the crystalline lens.

Although the analysis is performed automatically, for quality control purposes, the OCT
images, the segmentation process and the final retrieved 3-D models were visualized by two
different trained observers, who checked that the images had sufficient quality, that all the
surfaces of interest were visible, that they were correctly detected by the algorithm, and that the
3-D models were smooth, ensuring that all automatic processes were carried out correctly.

2.5 Quantification

The quantification process involves measuring the geometrical features from the preoperative
3-D models which are used, along with the clinical features, as input features that feed the
machine learning and feature selection algorithms. Also, the quantification of the 10L tilt from
postoperative 3-D models is used as ground truth.

2.5.1 Input features

From the 3-D model of each eye we measured 65 features. Specifically, the set of features
included (see Supplementary Appendix 1 for a brief description of each feature and its
corresponding acronym):

- Preoperative clinical and IOLMaster 700 features: 16 features obtained in the clinic or
directly output by the 1O0LMaster 700, including patient age, gender, laterality of the eye,
preoperative refraction (Sphere, Cylinder, Spherical equivalent), IOL model and power
implanted, axial length, pupil size, and keratometry.

- Preoperative geometrical features obtained from OCT (3-D models within the pupil): 25
geometric features of the eye obtained directly from OCT images. Specifically, these features
are quantified from the 3-D models considering only the part of the crystalline lens that is
visible throughout the pupil (before estimating the full shape of the crystalline lens) using
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custom developed algorithms that have been successfully applied to custom designed and
commercial OCT systems in our prior work [33, 34]. Measured parameters include axial
distances and curvatures of the different surfaces within the eye (anterior and posterior cornea
and crystalline lens), and preoperative tilt (magnitude and direction) of the crystalline lens.
Preoperative tilt is defined as explained in Section 2.3.2 for the IOL. Radii of curvatures were
calculated searching the best fitting sphere in a fitting area of 6 and 3 mm (see supplementary
document for details).

- Preoperative crystalline lens full shape features obtained from OCT: 24 features related with
the crystalline lens full shape, such as its volume, equatorial plane position or its diameter
(estimated as in [9, 29, 30]), and the coefficients of the eigenlenses method. The eigenlenses
and eigencenter coefficients (eigenlenses constructed to represent the optical zone of the
crystalline lens that is visible through the pupil) were determined in accordance with [30, 31].
These features were of special interest and introduced in the current study for the first time.

Figure 4 illustrates the definition of some of these features.

RAC_3D, RPC_3D, RAL_3D, RPL_3D: Radius of
curvature of the anterior and posterior surfaces
19} of the cornea, and the lens, respectively.
Obtained from the 3-D models (i.e., best sphere
ACD fitting. Fitting diameter=3mm) in millimeters.

RAC_3D, PreopK1, PreopK2, Sphere, Cyl

PreopK1, PreopK2: Keratometry. Highest
(preopK1) and lowest (preopK2) Radius of
curvature meridian in cornea, in Diopters.

Z (mm)

Sphere, Cyl: Preoperative refraction and
astigmastism of the patient’s eye, in Diopters.

Full shape of the CT: Corneal thickness in millimeters.
crystalline

lens parameters ACD: Anterior chamber depth in millimeters.

4
X (mm) Y (mm) LT: Crystalline lens thickness in millimeters.

Fig. 4. Definition of some of the features from 3-D preoperative models.

2.5.2 Ground truth

The ground truths for the variables to be predicted (IOL tilt magnitude and IOL tilt direction)
were obtained from the postoperative models. These variables are defined in Figure 5 and are
described in detail in earlier work [26]. The tilt was obtained by: (1) calculating the middle
plane between the anterior and posterior surfaces of the IOL using multiple linear regression;
(2) obtaining the normal vector to that middle plane; (3) calculating the angles (tilt magnitude,
polar angle in spherical coordinates; and tilt direction, azimuthal angle in spherical coordinates)
as defined in Figure 5. Intuitively, tilt magnitude indicates the “amount” of'tilt, and tilt direction
indicates the “orientation” of that tilt. Tilt direction ranges from [0°, 180°] U (0 to -180°) and
tilt magnitude from 0 to 9° (maximum value found in the data set). The same definitions apply
to preoperative tilt of the natural crystalline lens.
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Fig. 5: Definition of the IOL tilt magnitude and direction from the 3-D postoperative models. These are the variables
to be predicted.

2.6 Feature selection and estimation

Two estimators were designed using ML approaches for the estimation of the IOL tilt
magnitude and direction. Several regression methods were tested, in particular ridge models,
regression trees, support vector machines, Gaussian process regression (GPR), ensembles of
trees, and neural networks. In both estimation problems (estimation of tilt magnitude and of
direction) GPR provided the minimum estimation error across methods, and thus, the results
using GPR are reported in this study. A 5-fold cross-validation approach was used (i.e., splitting
the sample in 5 groups, using 4 for training and 1 for test) and the experiments were repeated
100 times. The optimization metric was the average across experiments of the mean absolute
error (MAE) in degrees between estimated and actual lens tilt (magnitude and direction) in the
test set.

The relevant features were selected using a sequential forward feature selection algorithm that
starts with an empty set of features and, in each iteration of the algorithm, selects the feature
that, in combination with the set of features already selected, minimizes the estimation error
using a GPR method ([35-37]). The algorithm stops if the MAE does not decrease when a hew
feature is added (i.e., if there is no improvement in prediction).

For the definition of GPR, we considered the following model [35-37]:

g =fx) +hx)'B
where f(x) is a zero mean Gaussian Process, f(x)~GP(0,k(x,x")), h(x) are a set of fixed
basis functions that transform the original feature vector x, and B are basis function

coefficients.

In our experiments, we chose a constant basis function h(x) and an exponential kernel, defined
as follows:

k(x;x;|0) = ofexp (— 5)
1

where g, is the characteristic length scale and r = /(xx; —x;)" (x;—x;) is the Euclidean distance
between x; and x;. Thus, the model is completely defined by the variance of noise oz, the g
coefficients, and the hyperparameters of the kernel function o, and g;, which are obtained by
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training the model, and are specified in the results section for each estimator. Features are
standardized (centering data around the mean and scaling to the standard deviation) to train the
algorithm.

2.7. Data analysis

Linear regression analysis between preoperative and postoperative tilt magnitude and direction,
and between left and right eyes was performed, obtaining the Pearson correlation coefficient
(r), the p-value for testing the hypothesis of no correlation, and 95% confidence intervals
(related with the regression line) over the regression parameters.

We compared the mean value across experiments of MAE for consecutive number of features
in the feature selection algorithm using a two-tailed paired t-test. We also compared the mean
MAE across experiments using different estimation methods (linear correlation, [27] and the
proposed method) using a two-tailed paired t-test with Bonferroni correction. The normality of
the MAE data distribution was assessed with the Kolmogorov-Smirnov test.

For all analyses, statistical significance was defined as a p-value lower than 0.05. Calculations
were performed with Matlab (MathWorks, Natick, MA, USA, version R2022b).

3. Results

In this section we (1) analyze the tilt magnitude and direction in right and left eyes and the
correlation between tilt pre and postoperatively, and between right and left eyes; (2) show the
ranking of features that best estimate tilt magnitude and direction (feature selection); (3) present
the results obtained with an estimator trained with the best set of selected features.

3.1 Tilt magnitude and direction in right and left eyes

Figure 6 shows polar plots that represent the preoperative (crystalline lens) and postoperative
(10L) tilt magnitude and direction for right and left eyes. Following the representation proposed
in earlier work [25], the radial distance to the center (from 0° to 8° in preoperative and from Q°
to 11° in postoperative) represents the tilt magnitude in degrees, while the angle represents de
tilt direction ([0°, 180°] U (0 to -180°)).

Preoperatively, the mean £ STD crystalline lens tilt magnitude was 3.63° + 1.00° and 3.98° +
1.03° for OD and OS respectively, tilted nasally for both eyes (tilt direction of 10.97° + 17.70°
and 164.22° + 16.08° respectively). Postoperatively, the IOL tilt magnitude was 5.06° + 1.30°
and 5.12° + 1.36° for OD and OS respectively, tilted nasally for both eyes (tilt direction of
13.14° + 16.68° and 161.50°+15.81°).
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3.2 Correlation between pre- and postoperative tilt and between right and left eyes

Figure 7 shows the correlation between preoperative and postoperative tilt magnitude (Fig 7A)
and direction (Fig 7B). Pearson correlation coefficients (p) and the p-value for testing the
hypothesis of no correlation are shown. Marginal histograms, 95% confidence intervals and
best linear model are also presented in Figure 7.
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Note that, in this case, to obtain meaningful correlations, left eyes were reflected (i.e., tilt
direction was changed) as follows:
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Fig. 7: Scatterplot with best linear regression lines, marginal histograms, and 95% confidence intervals (CI) between
preoperative tilt (the tilt of the natural crystalline lens before the surgery) and postoperative tilt (the tilt of the IOL
implanted). A) Tilt magnitude. B) Tilt direction. Pearson correlation coefficients (p) and the p-value for testing the
hypothesis of no correlation are also shown. Outliers (not taken into account for fitting the model) are shown in red
color (some outliers are not visible because they are out of the range represented in the axes).
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Figure 8 shows the correlation between right eyes (OD) and left eyes (OS) for preoperative (top
row) and postoperative (bottom row) tilt magnitude (Fig 8A, left column) and direction (Fig
8B, right column). A total of 97 patients with paired eyes were used in the analysis. Pearson
correlation coefficients (p) and the p-value for testing the hypothesis of no correlation are
shown. Marginal histograms, 95% confidence intervals and best linear model are also

represented.
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Fig. 8: Scatterplot with best linear regression lines, marginal histograms, and 95% confidence intervals (CI) between
right eyes (OD) and left eyes (OS). Top row: preoperative measurements; bottom row: postoperative measurements.
A) Tilt magnitude; B) Tilt direction. 97 patients with paired eyes are used in the analysis. Pearson correlation
coefficients (p) and the p-value for testing the hypothesis of no correlation are also shown.

3.3 Feature selection

Figure 9 shows the decrease in estimation error as we are including the features selected by the
feature selection algorithm (the order indicates the feature ranking). Error bars represent STD
across experiments and asterisks indicate statistically significant differences between mean
MAE for consecutive number of features. From the 65 candidate features, there were six that
were consistently identified across experiments by the feature selection algorithm as the
primary features to predict IOL tilt magnitude and direction (i.e., inclusion of a higher number
of features did not produce a decrease in MAE).

Postoperative tilt magnitude Postoperative tilt direction
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Fig. 9: Feature selection process, quantifying the decrease of MSE es as new features are included in the estimation.
A) Postoperative tilt magnitude estimation. The ranking of Features is: 1) Preoperative tilt magnitude; 2) Equatorial
Plane Position (EPP), obtained from the full shape of the crystalline lens; 3) Preoperative tilt direction; 4) Radius of
curvature of anterior cornea (RAC); 5) Gender; 6) Vitreous Chamber Depth (VCD); B) Postoperative tilt direction
estimation. The ranking of features is: 1) Preoperative tilt direction; 2) Laterality of the eye (OD-0S); 3) a, eigenlens
coefficient, that indicates asymmetric changes of the shape of the lens; 4) a, eigenlens coefficient, related with the
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size of the crystalline lens; 5) # days (Number of days since operation, defined as the number of days from surgery to
postoperative scan); 6) ACD (Anterior Chamber Depth). Error bars represent STD across experiments. Asterisks
indicate statistically significant difference between mean MAE for consecutive number of features (i.e., comparing
consecutive states of the feature selection algorithm). Paired t-test, p<0.05.

Table 1 shows the mean, STD, maximum and minimum values of the selected features for the
tilt magnitude and direction estimations.

Table 1. Summary of the selected features.

Magnitude | Preoptilt | EPP Preop tilt RAC Gender | VCD
Magnitude | (mm) Direction (mm) (M/F) (mm)
(degrees) (degrees)

Mean+STD | 3.78+1.03 | 2.01+0.25 | 13.1+17.15 | 7.86+0.31 | 149/207 | 15.86+1.21

Range 1.21/7.35 | 1.34/2.63 | -63.5/58.85 | 6.59/9.53 | -- 12.65/24.47

(Min./Max.)

Direction Preop tilt Laterality | a, a, # days ACD
Direction (OD/0S) (days) (mm)
(degrees)

Mean+STD | 13.1+17.15 | 198/158 0.97+0.53 | -2.7+18.4 | 140+141 | 2.58+0.38

Range -63.5/58.8 | -- -0.51/3.20 | -68/43 6/586 1.58/3.59

(Min./Max.)

STD, Standard deviation; EPP, Equatorial plane position; RAC, Radius of curvature of anterior cornea; VCD, Vitreous
chamber depth; # days, Number of days since operation; ACD, Anterior chamber depth

3.4 Estimation error and optimal parameters in training

Table 2 shows the mean absolute error (MAE, in degrees) =+ STD of the estimation, the eye
with maximum estimation error (Max. error) and the number of eyes with estimation error
higher than MAE+oc, where o is one standard deviation across eyes (approximately 1.5 degree
for the tilt magnitude and 17 degrees for the tilt direction). Linear correlation model (correlation
shown in Figure 7), GPR estimation algorithm trained using the features proposed in Waser et
al. [27] (only for tilt magnitude), and the proposed algorithm using the features described in the
previous section are compared. Note that for comparisons with [27] we used the preoperative
tilt magnitude, lens thickness, and axial length as suggested in the paper, but we were not able
to include pupil decentration as feature because we did not have that value for all the eyes. The
last column indicates the p-value for testing the difference between means (paired t-test with
Bonferroni correction). The second row shows the MAE for the estimation of the postoperative
magnitude and the third row for the estimation of the postoperative direction. The STD is
calculated across experiments, and the linear correlation model was included in the cross-
validation loop (i.e., the MAE results were obtained in a test set not used to obtain the linear
model).

Table 2. Mean MAE + STD across experiments (degrees), maximum estimation error (Max. error) and number
of eyes with estimation error higher than 1.5/ 17 degrees (magnitude/ direction respectively). Linear correlation
model, a method trained with the features proposed in [27] (except for pupil decentration) and the proposed
algorithm are compared.

Results Linear [27] Proposed p-value
correlation
Postoperative | MAE (deg.) 0.84+0.003 | 0.83+£0.007 | 0.79+0.007
tilt magnitude | Max. error (deg.) | 4.00 4.23 3.97 p<<0.05
Error>1.5 degrees | 61 56 48
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Postoperative | MAE 9.60+0.04 9.18+0.11 p<<0.05
tilt direction Max. error (deg.) | 47.5 46
Error>17 degrees | 58 55

The application of the proposed method results in both lower errors (decreased MAE) and in a
lower number of eyes with high errors in comparison with linear correlation and [27]. STD of
the MAE of tilt magnitude across eyes was marginally lower for the new method: 0.69 deg,
0.69 deg, and 0.68 deg for linear correlation, [27], and proposed methods respectively. STD of
the MAE of tilt direction was also lower for the proposed method: 8.80 degrees and 8.61
degrees for linear correlation and proposed respectively. These results suggest that the proposed
estimator is more robust across different eyes.

Table 3 shows the optimal parameters selected for the GPR in the estimation of the tilt
magnitude (first row) and tilt direction (second row).

Table 3. GPR optimal trained parameters for tilt magnitude and direction.

On B Or 01
Postoperative tilt | 0.86 5.0 1.61 9.24
magnitude
Postoperative tilt | 9.72 141 31.3 18.04
direction

Variance of noise o7, B coefficients, and hyperparameters of the kernel function o5 and ;.

4. Discussion

The estimation of postoperative intraocular lens (IOL) tilt and position from preoperative
measurements is a promising approach for enhancing the accuracy of cataract surgery optical
predictions. By integrating these estimates into a virtual surgery tool, along with eye’s and IOL
geometrical values and estimates of the IOL position, it is possible to build custom eye models
and simulate the optical quality by ray tracing. In this work, we propose a machine learning
model designed to estimate IOL tilt. To our knowledge, this model is the first in the literature
to utilize the full shape geometry of the crystalline lens as candidate input features, providing
a more comprehensive representation of the eye's anatomical structure. We also focus on
identifying the most relevant set of features to improve prediction accuracy and model
efficiency for this task.

Mean tilt magnitude and direction obtained in this paper were similar to the ones reported in
previous works using IOLMaster 700. Mean preoperative (crystalline lens) tilt magnitude was
3.8%in our work, 4.3°in [26], and 3.7° in [25], and postoperative (IOL) tilt magnitude was 5.1°
in this paper, 6.2°in [26], and 4.9° (OD) and 5.2° (OS) in [25]. Mean preoperative tilt direction,
after mirroring left eyes, was 13.1° in this work and 15.8° in [26]. Postoperative tilt direction
was 15.5° in this work and 16.8° in [26]. Remarkably, postoperative tilt magnitude was higher
than preoperative in all the results reported. Correlation coefficient between pre- and
postoperative tilt magnitude was p=0.59 in this paper, p=0.37 in [26], and p=0.70 in [25].The
correlation between pre- and postoperative tilt direction was p=0.62 in this work, p=0.71 in
[26], and p=0.76 in [25]. In this work we used data from 356 eyes measured pre and
postoperatively to train the models, in comparison with 62 [26], 65 [25] and 50 [27] in previous
work. The five times larger sample in the current work should largely contribute to the
generalization ability of the machine learning algorithm.



521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572

Although the mean improvement on the estimation of 0.05 degrees in tilt magnitude and 0.4
degrees in tilt direction may not be clinically relevant, the significant reduction of eyes with
large tilt estimation errors makes the approach potentially valuable in those individuals. We
found that the number of eyes with MAE greater than 1.5 degrees in tilt magnitude is reduced
by 13 eyes (from 61 to 48 eyes) by using our proposed method instead of linear correlation.
Furthermore, the number of eyes with MAE greater than 17 degrees in tilt direction is reduced
by 3 eyes (from 58 to 55 eyes). Previous work showed that the presence of physiological tilt
compensated corneal lateral coma, rather than degrading the optics [38]. However, IOL tilt
above a certain physiological amount can induce astigmatism and higher-order aberrations.
Furthermore, to illustrate the extent to which the tilt magnitude and tilt direction affect the
implantation axis of a toric lens, a wavefront simulation was conducted by Waser et al. with
toric IOLs [27]. The study concluded that incorporating the consideration of postoperative 10L
tilt into the preoperative calculations is associated with improved visual performance for the
patient, particularly for those receiving toric lenses.

In our study, 96 eyes were excluded because their pupils measured less than 3 mm. This
exclusion was based on two main considerations: (i) Reliability of geometric parameter
estimation. The estimation of the full shape of the crystalline lens and other geometric
parameters, such as radii of curvature is more reliable for larger pupils. As demonstrated before
[39] the variance in certain geometric parameters for age-matched eyes increases significantly
when pupils are smaller than 3 mm. Additionally, findings using donor lenses showed that the
accuracy in estimating the full shape parameters, such as lens volume, improved for pupils
larger than 3 mm, but the estimation was only slightly better with 5 mm-pupils compared to 4
mm pupils. (ii) Stability in calculating lens tilt. The calculation of the crystalline lens tilt is
more reliable with pupils larger than 3 mm. For larger pupils, the orientation of mid-plane
derived from the anterior and posterior lens surfaces is more stable, improving the accuracy of
tilt measurements.

In our study, we excluded some outliers in the polar plots or pre/postoperative tilt correlations
(12 eyes, marked in red in Figures 6 and 7). These eyes did not show small pupils, and OCT
images and constructed 3-D models were apparently correct. Further analysis of these cases
showed interocular axial length discrepancies postoperatively, steep corneal curvatures,
interocular keratometry discrepancies, and eye fixation difficulties. Review of clinical history
of some of these patients also showed some indications (capsular contraction syndrome, haptic
dislocation, and intravitreal injections prior to the cataract surgery). The analysis of the
potential relation between low predictability in those cases and clinical complications is beyond
the scope of the current study.

During the feature selection process, six features were selected, corresponding to the mean
number automatically selected by the feature selection algorithm across experiments. This
number of features is considered appropriate relative to the sample size, helping to mitigate the
risk of overfitting. Specifically, when estimating IOL tilt magnitude, the preoperative tilt
magnitude was selected in 100% of the experiments, EPP in 95%, the preoperative tilt direction
in 90%, gender in 70%, and RAC and VCD in 65% of the experiments. When estimating the
IOL tilt direction, the preoperative tilt direction, laterality of the eye and a, eigenlens
coefficient were chosen in 100%, number of days from surgery (# days) in 37%, a, coefficient
in 28% and 10L model and ACD in 21%. Our analysis showed that for both magnitude and
direction, the second and third features were the most effective in reducing estimation error,
compared to using only the preoperative tilt. Additionally, the inclusion of the fourth feature
(RAC for magnitude and a, coefficient for direction) resulted in only a slight reduction in
MAE. Notably, when the fourth feature was excluded, adding the remaining features (fourth to
sixth) did not further improve estimation accuracy. This suggests that the observed reduction
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in MAE after the third feature is primarily driven by the interaction between the fourth, fifth,
and sixth features. Importantly, all reductions in MAE associated with the inclusion of
additional features were statistically significant except for the case of RAC (from the third to
fourth order feature in magnitude estimation).

As expected, the preoperative tilt of the crystalline lens was the most important feature for
predicting IOL tilt. Significantly, geometrical features describing the full shape of the
crystalline lens are selected for the estimation of the magnitude (EPP) and direction
(coefficients a, and a,). EPP, defined as the distance between the anterior surface apex and the
equator of the crystalline lens, is only available through the estimation of the full shape of the
lens. In good agreement with other studies [25, 27, 28] we also found a significant correlation
between axial length (AL) and IOL tilt magnitude (p=-0.25, p<<0.05). Nevertheless, AL is not
selected by the feature selection algorithm, probably because this information is already
explained by the preoperative tilt magnitude and the EPP, also correlated with AL. Our earlier
work in a young subject cohort of crystalline lens parameters as a function of myopia found
correlations between AL and EPP, with longer eyes showing lower EPP [14]. However, the
selection of EPP as a primary feature indicates that EPP provides complementary information
to estimate the tilt in a non-linear fashion. This relationship may stem from the fact that lower
EPPs are typically associated with more elliptical crystalline lens shapes, whereas higher EPPs
correspond to more rounded lens shapes. In cases with more rounded lens shapes, the
intraocular lens (IOL) may not fit as well, leading to a lower tilt magnitude. For tilt direction,
it is reasonable that “non-symmetric” features play a more critical role. In the current study we
observed a statistically significant difference for preoperative tilt magnitude and direction as
well as postoperative tilt direction between right and left eyes (after mirroring left eyes), t-test,
p<<0.05. Similar findings were previously reported [27], and may explain the importance of
laterality in improving prediction accuracy. Additionally, the eigenlens coefficient a, was
identified as an important feature, reflecting asymmetric changes in lens shape after removing
tilt. This asymmetry intuitively influences the tilt direction. Some features, such as RAC, are
less intuitive, but they may contribute through non-linear interactions with other features,
providing complementary information to enhance predictions.

In our training, we used pairs of correlated eyes (OD-OS). Although it is generally
recommended to either include both eyes from a pair in the same set (training or testing) or use
one eye per pair to minimize the risk of overfitting, we found minimal variation in estimation
error across cross-validation folds and experiments that have different proportions of randomly
selected OD-OS pairs (STD across experiments of 0.007 and 0.11 degrees for tilt magnitude
and direction respectively). These results indicate that overfitting is not a concern and that the
inclusion of eye pairs does not adversely affect the outcomes.

Our trained model can be used to predict IOL tilt based on preoperative OCT imaging, or new
models can be trained that are specific, for example, to a specific IOL type. A similar strategy
can be applied to estimate the position of the IOL from some preoperative OCT geometrical
features [39]. Therefore, the computational cost to extract the required geometrical features for
applying the algorithm would also serve the purpose of estimating the ELP, obtaining all the
necessary data for the construction of the 3-D model that would be used as input to the virtual
surgery platform. Remarkably, the procedure can be applied on the OCT scans that are routinely
acquired preoperatively for biometry measurements (in this case using the IOLMaster700) that
are standard of care in many practices.
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5. Conclusion

We have proposed a method for the IOL tilt estimation after cataract surgery from preoperative
features of each patient, including, for the first time, geometrical features of the full shape of
the crystalline lens. This is useful to create a virtual surgery platform. By integrating these
advanced prediction methods into clinical practice, surgeons can potentially select the most
appropriate IOL for each patient, reducing the risks associated with 10OL misalignment,
improving long-term outcomes, and ultimately providing better visual quality for patients after
cataract surgery.

In the future, we plan to explore several open interesting questions regarding the factors
influencing IOL tilt that could be solved with our data set, including: (i) How do factors such
as the surgeon's technique or the clinical site impact IOL tilt? (ii) Does the choice of IOL model
affect tilt and its prediction? (iii) Are certain features more important for predicting IOL tilt in
different IOL models? (iv) Is there an improvement in accuracy by training each 0L model
separately? Additionally, it will be valuable to investigate tilt in toric lenses, as well as examine
the relationship between IOL tilt and other visual quality metrics and clinical features, such as
cataract grade.
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