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1. ANGLE-DEPENDENT POWER DISTRIBUTION OF CERENKOV SECOND-HARMONIC
GENERATION SIGNAL

Based on the definitions in Fig. 1 of the main text, an expression for the signal power generated
through Cerenkov second-harmonic generation (CSHG) is derived in the following. The pump
mode is assumed to be guided in a waveguide structure along the Z-direction. The corresponding
wavevector can be written as:

-

Fp = kp2. (S1)

Since conversion is realized as a radiation mode in the cladding, the signal is not confined to the
waveguide. Hence, the directionality of the signal wavevector is parameterized, with respect to
the pump-carrying waveguide, in spherical coordinates by an elevation angle § and an azimuthal

angle ¢:
sin(0) cos(¢)
ks = ks sin(6) sin(¢) | - (52)
cos(0)

Note that both kp, and ks are complex quantities containing the wavenumbers and attenuation
coefficients for the pump and signal respectively:

ks = Bs + i /2, (S3a)
kp = Bp + iap /2. (S3b)

With respect to the geometric axes in Fig. 1, a position vector can be defined:

X
=y (54)
Z

The total electric fields of the pump (guided by the waveguide) and the signal (radiating from the
cladding) are defined as:

gp(?,t) = eikP‘7e’i“’PtAp (z,t)ép(x, 1) (S5a)
E(7, 1) = et /9 / T A (2,16, )%(x, 16, ) d6 dep. (S5b)
Jo Sy

The corresponding magnetic field of the signal can be written analogously as:
(7, 1) = e st /6 / 5T A (2,50, 0)65(x, 16, ) A6 dg. (S50)
¢

In these expressions, wp and ws are the angular frequencies of the pump and signal respectively,

€, ¢ and B are transverse electric and magnetic mode profiles, and Ap, and A are corresponding
amplitudes. Since the radiation modes form a continuum [1], the expression for the total signal
field must contain contributions from all possible radiation modes. This is ensured through the
parametrization in the elevation and azimuthal angles 6 and ¢. By integrating over all 8’s and ¢'s
in Egs. (S5b) and (S5c¢), contributions from the entire continuum of radiation modes is considered.
In the following, cw-operation is assumed, and hence the time-dependence of the amplitude
functions is dropped.



The second-harmonic signal is generated through a nonlinear polarization P induced by the
pump as it propagates along the waveguide in the Z-direction. The corresponding evolution of
the signal amplitude can then be described by a chief equation [2], where the oscillating terms are
contained in the amplitude:

Ws

— g , B .k, ips
0 As = Z4Ns //IRZ Ps-Ee dxdy. (S6)

For conciseness of notation, a propagator is defined as:
s = fc's -7 — wgt. (S7)

The parameter N; is a normalization factor with units of power, defined for the continuum of
radiation modes as [1]:

No= 5 [t ((50.0) x50/, 9)) -2) dady = Po(@" — 0)3(¢' — ). s8)

The Dirac delta distribution in Eq. (58) ensures the necessary orthonormality of the radiation
modes. The quantity P has units of power, and is by convention set to 1 mW. For a second-order
nonlinearity, the induced nonlinear polarization can be expressed as [3]:

Ps = eODAf, (2)Tse AP Le™IBPIIPs (S9)

In Eq. (89), the parameter D is the x® nonlinear tensor of the materials. For SiO, and SizNy it is
vanishing, while it takes the following shape for BBO:

0 0 00 01
D~dpg|1 -1 0 0 0 0]- (510)
0 0 00 0O

The approximate equality in Eq. (S10) is due to neglecting the di5 and d33 coefficients, which in
BBO are small compared to the dy4 coefficient [4]. Additionally, in Eq. (S9), two terms containing
the phase mismatch in the longitudinal and transverse directions respectively are introduced:

Ag| = [kscos (0) — 2kp] z. (S11a)
A¢ | = kssin (0) [cos (¢)x + sin (¢)y] . (S11b)

By noting that the longitudinal part of the propagator cancels when:
6 = arccos (2kp /ks) , (512)

the commonly stated criterion for CSHG is obtained. This criterion relates the effective index of
the pump 7, and refractive index of the signal 75 to the Cerenkov angle 0..:

6. = arccos(np/ns) . (S13)

Eq. (S13) is of great importance when designing devices based on CSHG emission. Returning to
Eq. (S9), The vector 75 contains the pump field mode profiles, defined based on the mode field
components along the crystal axes of the BBO cladding as:

—| 7 | (S14)

S
\




Inserting Eq. (S9) into the chief equation given by Eq. (S6), and using the normalization in Eq.
(S8), it can be shown that the signal amplitude of a radiation mode given by any combination of 6
and ¢ can be expressed as:

9 Aslgp = EOWSAZ eibo| // D7, T (6,¢') e 292 dxdy. (515)

In the above expression, 0 # 9’ and ¢ # ¢'. By integrating Eq. (S15) over all angles 6 and ¢,
including 6’ and ¢’ and using Eq. (S8), an expression for the signal amplitude at specifically 6’
and ¢’ is obtained:

EoWs

0: il gr = iS5 B @) My [[ D09 Rix,y) dxdy. (516)

In Eq. (S16), the term R (x, y) handles the transverse part of the phase mismatch and is defined as:
Rxy) = [ [ e oy dodg. (517)
6/¢

From Eq. (516), a z-independent and unit-less coupling coefficient can be defined, indicating the
strength of coupling from the guided pump mode into a second-harmonic radiation mode signal
given by 6 and ¢":

¢') = <0 // D7, -2 (6, ¢')R(x, ) dxdy. (S18)

Apparent from Eq. (S18), the couphng coefficient is obtained by integrating the interaction
of the second-order nonlinear tensor element, pump mode, and signal mode over the entire
transverse plane. Since the guided pump mode decays evanescently away from the waveguide,
this is approximated by performing the calculation numerically over a waveguide cross section
encompassing the entirety of the pump mode. By substituting this expression into Eq. (516), the
signal amplitude for a radiation mode given by any 6, ¢-pair becomes:

0:Aslgg = 10 A2(2) 191y (6, ). (519)

The propagation loss of the pump due to scattering and absorption is contained in the parallel
part of the propagator through Eq. (S3a):

e—iBe — e—ucpze—i(ﬁs cosG—ZB,,)z. (S20)

In Eq. (S20), loss of the signal is neglected, i.e. s = 0. In the following, the pump loss in Eq. (520)
is contained in the z-dependent pump amplitude Ay (z). Coupling from the signal mode back to
the pump is not accounted for, since the signal travels away from the waveguide as it is generated,
preventing further interaction. The signal amplitude of a radiation mode parameterized by 6 and
¢ after propagating a distance L along the waveguide is then given by:

Aslog(L) = i2x(6,9) / A2 (2) e~ Bscos0-28)2 g (821)

It is important to note that due to the continuum-nature of the radiation modes, all possible
radiation modes are excited simultaneously. Hence, to evaluate the total signal generated,
coupling into all possible 6, ¢-pairs must be considered. This is achieved by calculating the
coupling coefficient given by Eq. (518) in the angular ranges 0 < 0 < w/2and 0 < ¢ < 71/2,
and subsequently the corresponding amplitudes given by Eq. (521). From these amplitudes, the
power of the generated radiation mode signal for a given pump propagation length L can be
calculated. The spatially-dependent power flow in the 2-direction along the pump is given by the
time-averaged Poynting vector, which by integration over the transverse plane yields the total
generated power:

P= / / 55 ><7-l* 2dxdy. (S22)

Inserting the expressions for the total fields given by Eq. (S5b) and Eq. (S5c¢) into Eq. (522) yields
a z-dependent quantity:

@ =3[ [ [, [ Ao nLEo9)-

. (S23)
//IRZ % (x,y;0,¢) x bl (x,y;0,¢') - 2 dxdydedpde’dg’].



Substitution of Eq. (S8) into Eq. (S23), and setting z = L, results in the expression:

P(L) = % M /4> / , ALi6.9) AL (130, 9/ Nededga dcp} . (S24)

Inserting the RHS of Eq. (S8) yields delta functions in both the elevation and azimuthal angles:

Py(L) = % {P/e/qj / [ AL0, A L0,4)5(6 ~ 0)5( fqb)de(pdG’dqb’} . (525

By evaluating the first two integrals over 6’ and ¢, the delta functions are eliminated and a final
expression for the total radiated power is obtained:

P(L) = R {p /9 /4) AS(L;9,¢)A;(L;9,¢)d9d¢]. (526)

Eq. (526) describes the total power generated through CSHG by coupling from the guided pump
mode to the signal radiation modes. The expression considers the contribution from all radiation
modes which constitute the total signal field, and yields a single number expressing the generated
power. Using Eq. (S21) for numerical calculation of the signal amplitudes, Eq. (526) can readily
be calculated for a given device geometry.

To retain spatial information on the signal distribution in the angular domains, integration over
6 and ¢ can be dropped in Eq. (S26). This yields an expression for the power in each radiation
mode defined by 6 and ¢:

Py(L;6,9) = 9 [PA(L;6,0).A(L:6, ). (527)

Eq. (527) is used in the simulations in the main text to predict the angular distribution of the
generated CSHG signals.

2. DISPERSION MODEL

Through ellipsometry, a Cauchy model of the refractive index of a reference SizNy wafer is
measured. The reference wafer thin-film is deposited directly on silicon in the same Si3Ny
deposition run as the device wafers used in fabrication. The measured Cauchy model is described
by Eq. (528) with parameters given in table S1. In figure S1, the measured model is compared to
reference [5], used in the design simulations.

B C
n(A) = A+ 102ﬁ + 1o7ﬁ (S28)

A B C

1.976 +0.14- 104 83.2 4 0.0673 70.3 + 0.0369

Table S1. Measured parameters for Eq. (528) .



2.08
E —— Measured model
1 —— Reference [5]

2.06

2.04

C
2.02
2.00

B e e S T AL B o o o B O HLAAR S B O R SO B
400 450 500 550 600 650 700 750 800

Wavelength [nm]

Fig. S1. Comparison of the Si3N4 model measured in this work and recent literature [5].

REFERENCES

1. D.Marcuse, Theory of Dielectric Optical Waveguides (Academic Press, 1991).

2. K. B. Gravesen, A. B. Gardner, E. Z. Ulsig, et al., “Nonlinear Schrédinger equation for
integrated photonics,” J. Opt. Soc. Am. B 41, 1451-1456 (2024).

3. I Shoji, T. Kondo, and R. Ito, “Second-order susceptibilities of various dielectric and semi-
conductor materials,” Opt. Quantum Electron. pp. 797-833 (2002).

4. 1. Shoji, H. Nakamura, K. Ohdaira, et al., “ Absolute measurement of second-order nonlinear-
optical coefficients of B-BaB204 for visible to ultraviolet second-harmonic wavelengths,” J.
Opt. Soc. Am. B 16, 620-624 (1999).

5. S. Martinussen, E. Berenschot, D. Bonneville, et al., “Thick waveguides of low-stress stoichio-

metric silicon nitride on sapphire (SINOS),” Opt. Express 32, 36835-36847 (2024).



	Angle-dependent power distribution of Čerenkov second-harmonic generation signal
	Dispersion model

