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I. THEORY OF SPACE-TIME (ST) MERONS IN MOMENTUM-ENERGY SPACE

Skyrmions and merons are topological configurations of a three-component unit vector field

n(r) on a 2-sphere parameter space with coordinates r=(x,y,z). These configurations are distin-

guished by a nonzero topological number (Skyrmion number):

N=
1

4π

∫
n·

(
∂n
∂x

× ∂n
∂y

)
dxdy, (S1)

which quantifies the number of times n(r) wraps around the unit sphere. Skyrmions and anti-

skyrmions, characterized by N=±1, indicate that n(r) covers the entire unit sphere. An example

is a configuration where n= ẑ at the disk’s center and n=−ẑ at its perimeter. In contrast, merons

and antimerons, characterized by N=± 1
2 , indicate that n(r) covers only a hemisphere (Fig. 1A of

the Main text). For instance, n= ẑ at the disk’s center, and n⊥ ẑ at its perimeter. Hence, merons

are also known as half-skyrmions.

This paper examines the spin texture of photons in momentum-energy space, represented by

the normalized Stokes parameters:

n=(nx,ny,nz)=

(
S1

S0
,
S2

S0
,
S3

S0

)
. (S2)

All n’s form the Poincaré sphere. The base space is a curved surface in (kx,ky,ω) space (Fig. 1B of

the Main text). We present an explicit construction of the meron spin texture:

n(kr,ϕk)=
1√

k2
r+κ2

(krcos(ϕk+γ),krsin(ϕk+γ),κ). (S3)

Here we adopt the polar coordinates:

kr=
√

k2
x+k2

y, ϕk=arg(kx+iky). (S4)

The parameter κ specifies the meron’s radius in wavevector space, while the helicity parameter

γ∈(−π,π] determines the meron type—Néel type for γ=0,π and Bloch type for γ=π/2,−π/2

(Fig. S1)

It is worth emphasizing that throughout this paper we manipulate the polarization (also

known as spin) textures of optical fields in both spatiotemporal and momentum-energy space. In

the paraxial narrow-band regime that we focus on here the light polarization is described by the

Stokes parameters (S1,S2,S3) and they can encode more information than merely spin angular

momentum components in the propagation directions, which is characterized by S3 only. This is

in contrast to optical realizations of skyrmion in plasmonic systems, where skyrmionic textures

are imprinted onto the field profiles [1] or time-averaged spin vectors [2, 3].
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A. Jones vector representation of meron spin texture

We presented above an explicit construction of the meron spin texture. Here we provide an

equivalent representation using Jones vectors, which specify the electromagnetic fields more

explicitly.

We begin with a two-band Hamiltonian:

Ĥ(kx,ky;κ,γ)=
(
−kxcosγ+kysinγ

)
τ̂x+

(
−kxsinγ−kycosγ

)
τ̂y−κτ̂z. (S5)

Here, τ̂x,τ̂y,τ̂z represent Pauli matrices. The bases (1,0)T, (0,1)T, 1√
2
(1,1)T, and 1√

2
(1,−1)T

correspond to right circular, left circular, x, and y polarizations, respectively.

FIG. S1. Illustration of the helicity parameter γ

We choose the lower eigenstate of Ĥ to define our Jones vector. We define

θ(kr,ϕk)=π−arccos
κ√

k2
r+κ2

, θ∈[π/2,π); (S6)

φ(kr,ϕk)=ϕk+γ−π, φ∈[−π,π). (S7)

Then we obtain:

E(kr,ϕk)≡

Ercp(kr,ϕk)

Elcp(kr,ϕk)

=E0(kr,ϕk)

 sin θ
2

−eiφcos θ
2

, (S8)

where E0(kr,ϕk) is a scalar function that specifies the complex amplitude envelope.
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II. SYNTHESIS OF ST MERONS

A. Spectral Analysis

1. Spatially resolving the spectrum via chirped volume Bragg gratings (CBGs)

The first step to synthesizing an ST meron is to spatially resolve the spectral content of the

incident pulsed optical field, which we achieve using a chirped volume Bragg grating (CBG) [4]

whose grating period varies longitudinally. Consequently, when an optical pulse is incident onto

the CBG, each wavelength reflects from a different depth within it where the Bragg condition is

met. Therefore, when the field is incident normally onto the CBG, a group delay is introduced

between the different temporal frequencies (that is, temporal chirp), thus yielding a stretched pulse

[5, 6]. This property of CBGs is widely used for pulse stretching and compression in high-power

chirped pulse amplification (CPA) systems in light of the high damage threshold, high efficiency,

FIG. S2. (a) Layout of the field manipulation throughout each stage of the ST meron synthesis. (b)

Experimental setup for the synthesis and characterization of the ST meron. Here, CBG: chirped volume

Bragg grating, SLM: spatial light modulator, PP: phase plate, MS: metasurface, HWP: half-wave plate;

QWP: quarter-wave plate, LP: linear polarizer, BS: beam splitter, PBS: polarizing beam splitter, L: spherical

lens, SF: spatial filter, CCD: charged-coupled device camera.
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FIG. S3. (a) Spatially resolving the spectrum via a pair of CBGs (CBG1 and CBG2) at oblique incidence.

First, CBG1 introduces both temporal and spatial chirps into the input pulse. The sign of the spatial chirp

is then reversed via a 4 f system. When the field interacts with CBG2 (which is identical to CBG1), the

temporal chirp is canceled while the spatial chirp is doubled. After CBG2, the optical field is spatially

resolved along the horizontal axis x1 with no temporal chirp. (b) Measurements of the spatial chirp λc(x1)

at the output of the system in (a).

and potential for introducing extremely large temporal chirps [7]. A less-known property of

CBGs is their ability to introduce a spatial chirp (resolving the spectrum spatially) along with

a temporal chirp when the pulse is incident obliquely on a conventional CBG [8], or incident

normally on a so-called rotated CBG (r-CBG) in which the Bragg structure is rotated with respect

to the input facet [9]. For our purpose, it is crucial to remove the temporal chirp while retaining

the spatial chirp. This is achieved by directing the field emerging from the CBG to an identical

CBG placed in a reversed geometry with respect to the first [6, 10]. We show this procedure in

Fig. S3(a) unfolded for clarity.

2. Characterization of the spatially separated spectrum

We confirm the spatial chirp across the spatially resolved spectrum by scanning a single-mode

fiber (Thorlabs 780HP) across the wavefront emerging from the double-pass CBG system. The

fiber is connected to an optical spectrum analyzer (OSA, Advantest AQ6317B), and the measured

spectrum is plotted in Fig. S3(b). The measured spectrum has a bandwidth ∆λ≈0.8 nm centered at

λc≈796 nm spread spatially over 16 mm along the horizontal x-axis. The resulting spatial chirp is

20.4 mm/nm, and the spatial distribution of wavelengths is modeled as x1(λ)=20.4(λ−796) mm.
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B. Spectral transformation

1. Methodology

This spectral transformation can be achieved via a two-to-one spatial coordinate transformation

performed along the horizontal x-axis. Because the wavelengths are arranged linearly along x

after the spectral analysis stage and the field is uniform along y, this 1D coordinate transformation

re-arranges the wavelengths along x, thereby producing the targeted spectral transformation.

This spectral transformation stage aims at achieving two goals: (1) dynamically reconfiguring the

wavelength arrangement in the spatially resolved spectrum (which will subsequently result in

tuning the surface of the spatiotemporal spectrum of the ST meron); and (2) performing a two-to-

one mapping of wavelengths, thereby assigning two wavelengths to each position along the x-axis

at the output plane, in contrast to the field at the input plane in which each position is associated

with a single wavelength. This latter feature opens the path towards realizing ST merons on a

closed-surface spatiotemporal spectrum. In general, combining this spectral transformation stage

with the spectral analysis stage, we can produce, in principle, an arbitrary sequence of wavelengths,

which will subsequently produce an arbitrary spatiotemporal spectral surface.

The x-axis at the input plane is labeled x1 and x2 at the output plane. The targeted transforma-

tion then takes the form:

x2=A ln
∣∣∣∣ x1(λ)

B

∣∣∣∣, (S9a)

y2=y1, (S9b)

where A and B are scaling parameters at the input and output planes, respectively, and the

uniform field distribution along y remains intact. According to Eq. S9, a pair of points at ±x1

in the input plane are mapped to the same point x2 in the output plane, thus yielding a two-to-

one spatial transformation. To the best of our knowledge, all previous attempts at conformal

transformations have been limited to only one-to-one mappings [11–14], and thus fall short of

attaining the transformation in Eq. S9. In our approach, we divide the transformation in Eq. S9

into two one-to-one mappings:

T(+) :x2=Aln(x1/B); x1>0,B>0, (S10a)

T(−) :x2=Aln(x1/B); x1<0,B<0. (S10b)
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FIG. S4. The phase profiles required to implement the spectral transformation. (a) The phase profiles

Φ(+)
1 (x1) and (b) Φ(+)

2 (x2) to perform one-to-one transformation T(+) corresponding to x2=Aln(x1/B) for

x1>0 and B>0. (c) The phase profiles Φ(−)
1 (x1) and (d) Φ(−)

2 (x2) to perform the one-to-one transformation

T(−) corresponding to x2=Aln(x1/B) for x1<0 and B<0. (e) The phase profile Φ1(x1) in the input plane

to implement the two-to-one transformation T corresponding to x2=Ax1ln|x1/b|, which results from

concatenating the phase profiles in (a) and (c). (f) The phase profile Φ2(x2) in the output plane obtained

by interleaving the phase patterns in (b) and (d) every two pixels. The inset enlarges the plot in the range

−1mm<x2<−0.5mm.

The two transformations T(+) and T(−) are assigned to different non-overlapping domains of

the input plane x1>0 and x1<0, respectively, but share the same output domain x2. We can thus

use the existing methodologies to obtain the phase profiles required to perform each of these

two transformations. Such one-to-one conformal mapping can be implemented using two phase

patterns placed at the input and output planes and separated by a distance d1. The first phase

distribution Φ1(x1) at the input plane performs the desired transformation. However, such a
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transformation does not produce a collimated field. The second phase distribution Φ2(x2) placed

at the output plane collimates the transformed wavefront to yield an afocal transformation. The

required phase profiles can be derived using the methodology outlined in [12]. For the T(+)

mapping the required phase profiles Φ(+)
1 (x1) and Φ(+)

2 (x2) take the form:

Φ(+)
1 (x1)=

kA
d1

[
x1ln

( x1

B

)
−x1

]
−

kx2
1

2d1
, (S11a)

Φ(+)
2 (x2)=

kAB
d1

exp
( x2

A

)
− kx2

2
2d1

, (S11b)

where k= 2π
λ is the wave number, x1>0 and B>0 [Fig. S4 (a,b)] For the T(−) mapping the required

phase profiles Φ(−)
1 (x1) and Φ(−)

2 (x2) are

Φ(−)
1 (x1)=

kA
d1

[
x1ln

( x1

B

)
−x1

]
−

kx2
1

2d1
, (S12a)

Φ(−)
2 (x2)=− kAB

d1
exp

( x2

A

)
− kx2

2
2d1

, (S12b)

where x1<0 and B<0 [Fig. S4 (c,d)] . Now we need to combine these transformations into one

to perform both of them at the same time. For that, we need to combine Φ(+)
1 (x1) and Φ(−)

1 (x1)

into one Φ1(x1), which is straightforward as they have non-overlapping input spaces x1>0 and

x1<0 [Fig. S4 (e)]. It is more challenging to combine Φ(+)
2 (x2) and Φ(−)

2 (x2) into one Φ2(x2) as

they share the same parameter space x2. We achieve this by interleaving these two phase patterns

every two pixels so the field interacts with both profiles at the same time [Fig. S4 (f)]. Note

that such a method of combination by interleaving leads to finite diffraction efficiency, where

undesired diffraction orders can be cleared out by subsequent spatial filtering that follows the

transformation.

2. Experimental implementation

In the setup, the two phase distributions Φ1(x1,y1) and Φ2(x2,y2) are imparted to the optical

field via two reflective, phase-only spatial light modulators (SLMs; Meadowlark 1920×1080 series).

The SLMs are operated at a 5◦ incidence angle and are separated by d1=400 mm. Because the

phase profiles depend only on x and not y, 1D SLMs can – in principle – be used instead. However,

utilizing 2D SLMs provides the possibility of also modulating the field along y, which can be
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exploited to inculcate a phase modulation that is converted to the azimuthal coordinate after the

subsequent coordinate transformation. In our experiments, we use A=0.8 mm and |B|=6.5 mm

for the double-paraboloid ST meron, and A=−1.5 mm and |B|=0.5 mm for the spinning-top ST

meron.

The field after this spectral transformation is imaged by a 4 f system with unity magnification

comprising two spherical lenses from the output plane of the spectral transformation (x2,y2) to

the input plane (x3,y3) of the coordinate transformation. The field is flipped along the x and y

axes: x3=−x2 and y3=−y2. In addition, a spatial filter (in the form of a beam stop) is placed in the

Fourier plane of the 4 f system to eliminate the undesired zeroth-order field component resulting

from the limited efficiency of SLM1 and SLM2.

C. Coordinate transformation

1. Methodology

In this coordinate-transformation stage, conformal mapping is performed from log-polar to

Cartesian coordinate systems. The input plane is spanned by Cartesian coordinates (x3,y3) and

the output by (x4,y4). The transformation maps the input Cartesian coordinate system (x3,y3)

to a polar coordinate system at the output: (x3,y3)→(r,φ), where r=
√

x2
4+y2

4 and φ=arctan( y4
x4
).

The transformation is given explicitly as follows [11, 12, 15]:

r=Cexp
(
− x3

D

)
, (S13a)

φ=
y3

D
. (S13b)

The transformation parameter D is chosen to map the vertical coordinate y3 of the input field,

which extends over the range y3=[−ymax
3 ,ymax

3 ] to the angular range φ=[−π,π], which requires

that D=
ymax

3
π . The value of C is selected based on the radial aperture size of the optics used. This

coordinate transformation therefore maps a vertical line located at x3 at the input plane into a

circle of radius r=Cexp
(
− πx3

ymax
3

)
at the output plane.

This coordinate transformation is implemented by two 2D phase plates separated by a distance

d2. The first plate introduces the phase distribution Φ3(x3,y3) at the input plane, and the second
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introduces the phase distribution Φ4(x4,y4) at the output plane. For the mapping given in Eq. S13,

the phase patterns take the following form [12–14]:

Φ3(x3,y3)=− kCD
d2

exp
(
− x3

D

)
cos

( y3

D

)
−

k(x2
3+y2

3)

2d2
, (S14a)

Φ4(x4,y4)=
kD
d2

atan2(y4,x4)−x4ln


√
(x2

4+y2
4)

C

+x4

− k(x2
4+y2

4)

2d2
, (S14b)

where atan2(y4,x4) is the 2-argument arctan function. This arctan function generates a phase

singularity at x4=y4=0 in Eq. S14b, which would lead to a null intensity around r=0. This is

not surprising as according to Eq. S13a we expect to asymptotically reach r→0 at x3→∞. In

a widespread application of the log-polar coordinate transformation – sorting orbital-angular-

modes (OAM) when operated in a reverse geometry – this singularity usually escapes attention

because the incident field typically has a central node resulting from the helical nature of OAM

wavefronts. In other words, for OAM sorting, a circularly symmetric field with a null intensity at

the center is incident on the second phase plate, which veils the phase singularity in the second

phase plate [Eq. S14b].

2. Design of the phase profiles

We designed a phase plate to perform the coordinate transformation with the minimal effect

of the intensity null around r=0 discussed above. We optimize the transformation parameter C,

separation d2 in Eq. S13 and the aperture of the phase plates to maximize the ratio of the outer

radius rout to the inner radius rin, i.e. R=rout/rin. On the other hand, while maximizing R, we

need to make sure that during the transformation we stay within the paraxial regime as the phase

profiles in Eq S14 work well only within the paraxial regime. After taking into account all these

points, we find that the optimal ratio of R=40 is achieved for the aperture size of 14×14 mm2, the

separation distance of d2=300 mm, transformation parameters of C=7 mm and D= 12.37
2π ≈2 mm

for the central wavelengths of λ=798 nm.

3. Fabrication of diffractive phase plates for the coordinate transformation

We use a pair of analog diffractive optics [16] that introduce the phase profiles given in Eq. S14

modulo 2π to implement the coordinate transformation. Fabrication of the diffractive elements
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FIG. S5. Surface profiles of the diffraction phase plates to implement the coordinate transformation. Analog

log-polar mode sorting optics that consist of (a) a transformation optic and (b) a phase-correcting optic.

was performed using an analog photolithographic process [17, 18]. The complex phase function

is converted to a surface profile in photoresist using a mapping that corresponds to the desired

optical phase-only element. This intensity profile is then mapped to the zero-order diffraction

of a slowly varying phase mask with binary phase values 0 and π. This mask is then placed

into a 5× reduction projection printer (GCA – ALS, 0.45 NA, λ=365 nm), where all the non-zero

diffraction orders are filtered in the pupil plane, leaving only the zero-order intensity variation in

the wafer plane that is used to expose the photoresist. The photoresist (SPR220-3.0) has an initial

thickness of 3.5 um, which is reduced to 2.6 um after exposure, was subsequently developed

using AZ 300 MIF developer, and then post-exposure baked. This pattern was then transfer

etched into a fused silica substrate using CHF3 and O2 gas chemistry for a resulting overall etch

thickness corresponding to a 2π phase depth for λ=798 nm, which was ≈1760 nm.

The 5× de-magnification requires recording a mask of size 70×70 mm2 to produce an analog

phase plate of 14×14 mm2 surface area. The unusually large size of the masks necessitated a

recording time for the phase mask to produce Φ3 in Eq. S14(a) [Fig. S5(a)] was ≈2 days and the

recording time for the phase mask for Φ4 in Eq. S14(b) [Fig. S5(b)] was ≈4 days. We depict in

Fig. S5 the profiles of the two fabricated diffractive elements captured using a Keyence VK-X3000

confocal microscope with a 50× microscope objective. The 4800×2700 µm2 area shown for each

optic was captured by stitching together adjacent images.
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D. Metasurface for implementing a meron spin-texture

We introduce the meron texture in the spectral (kx,ky,λ)-domain by placing the meron meta-

surface immediately after the coordinate transformation, before the final Fourier-transforming lens

in the synthesis setup (Fig. S2). The metasurface is specially designed to introduce a meron

texture into a field when the incident light is polarized at 45◦, so we place the optical axis of

the metasurface at 45◦ with respect to the horizontal axis, which corresponds to the polarization

state emerging from the earlier stages. We designed a metasurface of surface area 14×14 mm2 to

correspond to the spatial extent of the field emerging from the coordination transformation stage

which is ≈14 mm.

1. Metasurface design

The target polarization profile depicted in Fig. S6(a), which constitutes the spin-texture of a

meron quasi-particle, corresponds to x- and y-polarized components of the form:

Ex = tan
θ

2
+eiφ, (S15)

Ey = i
(

tan
θ

2
−eiφ

)
, (S16)

where φ is the azimuthal coordinate and θ is given by:

θ=π− κ√
x2+y2+κ2

, (S17)

and we set κ=1 mm here. The amplitude and phase profiles of the Ex and Ey field components

are plotted in Fig. S6(b,d) and Fig. S6(c,e), respectively.

As described in the main text, we modulate the spatial distribution of the field polarization

to produce the desired spin texture using a dielectric birefringent metasurface. We adopt a

holographic-based phase-retrieval-like algorithm [19–22] to realize the target complex amplitude

profiles defined in Eq. S15 and Eq. S16. The phase-only profiles required to fully reconstruct

Ex and Ey (following Eq. (16) of Ref. [23]) are depicted in Fig. S6(f,g). We refer to these phases

as CGHx and CGHy since they are essentially two independent computer-generated holograms

(CGHs).

The next step is to fit the phase profiles CGHx and CGHy, pixel-by-pixel, into the birefringent

meta-atoms (unit cells) of a metasurface. Figure S7 depicts the meta-atom geometry that we
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FIG. S6. Phase retrieval of the metasurface plane. (a) The target polarization profile is described by the

spatially varying polarization ellipses depicted in red. This polarization profile is decomposed into two

orthogonal field components, Ex and Ey. The amplitude of (b) the x-polarized field |Ex| and (c) the y-

polarized field |Ey|. The phase of (d) the x-polarized field ϕx and (e) the y-polarized field ϕy. The phase-only

profiles for (f) the x-polarized and (g) y-polarized light needed for the holographic reconstruction of the

target polarization profile shown in (a).

adopted for this task. It is composed of an 800-nm-tall rectangular titanium dioxide (TiO2) nanofin

on a silica substrate. This choice of tall nanofins is amenable to our fabrication process while

enabling full-phase coverage at the design wavelength, as shown below. The unit cell size is

520×520 nm2. By changing the length dx and width dy of each nanofin, light polarized along

the x and y directions experience different effective refractive indices, thereby accruing different

phase delays.

The phase and amplitude of the transmission response of an x-polarized plane wave propa-

gating through the nanofin as a function of dx and dy are shown in Fig. S8(a,b), respectively. The

phase shift and transmission responses were obtained numerically via FDTD simulations. The

phase shift was obtained by probing the center of the far field projection on a plane above the

structure, whereas the power transmission here is defined as the total power passing through

a monitor above the structure relative to the source. We refer to this map as the metasurface

‘look-up table’ or ‘library.’ To better visualize the phase coverage of our metasurface library, we

plot the complex transmission txeiφx as depicted in Fig. S8(c). Each blue dot refers to a unique
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FIG. S7. Metasurface unit cell. Schematic of the metasurface unit cell composed of a rectangular nanofin

made of titanium dioxide (TiO2) with a fixed height of 800 nm on top of a glass substrate. These unit cells

support two propagating modes which, due to anisotropy, experience different indices (phase delays).

nanofin geometry. The plot suggests that our metasurface library has sufficient meta-atoms to

trace a unit circle, which implies full 0−2π phase coverage.

After populating the library, the next task is to fit the phase profiles CGHx and CGHy into the

physical meta-atoms; hence, constructing the metasurface mask. The selection criteria for this

mapping are performed pixel-by-pixel across the profile of the metasurface. It is a three-step

process which is described as follows [24]: (a) The complex-valued errors ϵx and ϵy are first

evaluated from

ϵx = |tavgeiφx,des−tsimeiφx,sim|, (S18)

ϵy = |tavgeiφy,des−tsimeiφy,sim| (S19)

for all possible nanofin configurations. (b) For each geometry spanning across the metasurface

geometry, the maximum error ϵmax=max(ϵx,ϵy) is determined, and finally (c) the configuration

that minimizes ϵmax at that pixel is selected. This process is iteratively repeated point-by-point

at each location of the metasurface until the entire mask is obtained. In essence, 45◦ linearly

polarized light incident on the nanofin can be decomposed into x- and y-polarized components

of equal magnitudes. After a single interaction with the metasurface, these two orthogonal

polarization components will be encoded with the desired phase profiles CGHx and CGHy,

achieving the target polarization transformation.
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FIG. S8. Metasurface Library. (a) Phase response ϕx of the nanofin (in Radians) as a function of the

transverse dimensions, dx and dy, for incident x-polarization. (b) The normalized power transmission of

the nanofins as a function of dx and dy, for x-polarization. From the symmetry of the rectangular structure,

y-polarization response is readily obtained by swapping x and y in (a) and (b). (c) The electric field

amplitude transmission txeiϕx plotted on the complex plane for each of the 2600 individual geometries

(blue dots). The red circle is the unit circle implying that our library can provide unity transmission and

phase coverage.

2. Metasurface fabrication

Once the metasurface profile is obtained, a CAD file is then generated and the metasurface is

fabricated using standard cleanroom recipes. Given the large size of the metasurface (14×14 mm2

surface area) and its subwavelength pixel pitch (520 nm), the CAD design contains roughly 725
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FIG. S9. Metasurface fabrication using a bottom-up approach. (a) A silica substrate is spin-coated with an e-

beam resist. (b) The resist is baked and then nanopatterned using e-beam lithography. (c) After developing

the resist, the nanopatterned gaps are conformally filled with TiO2 using atomic layer deposition (ALD). (d)

Finally, the excess film is etched away using reactive ion etching (RIE), and the resist is removed, leading

to the final structure.

million nanofins. Handling this amount of data in a single CAD file is not feasible by state-of-the-

art benchtop computers due to memory constraints. Therefore, the target design was fragmented

into 56 strips of 0.25 mm by 1.4 cm, each stored in a separate CAD file before their final assembly

on the lithography tool. While a 2-cm Pancharatnam-Berry phase metalens (made of rectangular

nanofins of the same dimensions) has been previously reported for light focusing [25], our 14-mm

device represents the largest metasurface for shaping vectorial structured light to date. The final

device was fabricated using a process reliant on electron beam lithography and atomic layer

deposition, as shown in Fig. S9 and described more fully in Ref. [26, 27]. The procedure is as

follows: a fused silica substrate is first spin-coated with a positive tone electron beam resist

(ZEP520A, Zeon SMI) that ultimately defines the height of the nanofins (800 nm). After baking

the resist, the desired pillar patterns were written by exposing the resist using electron beam

lithography (with an accelerating voltage of 150 kV), then developed in O-Xylene for 60 s. The

developed pattern defines the geometry of the individual nanopillars. Afterward, TiO2 was

deposited via the atomic layer deposition process (ALD) to conformally fill the developed pattern.

The excess layer of TiO2 on top of the device was etched away using reactive ion etching to

the original height of the resist. Finally, the resist was removed using a downstream ashing

(oxygen radicals) process leaving the individual TiO2 nanopillars surrounded by air. Figure S10

displays sample scanning electron microscope (SEM) images of the fabricated device, confirming

its smooth surface and vertical sidewall profile.

S17



FIG. S10. (a) A photograph and (b) scanning electron microscope (SEM) micrographs of the fabricated

metasurface.

3. Metasurface characterization

To characterize the device, we used a standard holographic setup comprising a 4 f imaging

system, as shown in Fig. S11. First, a λ=800 nm laser beam was spatially filtered and collimated

to provide a quasi-plane-wave illumination on the metasurface. A polarizer and HWP rotate

the incident polarization so that the metasurface behavior can be measured in response to 45◦

linearly polarized light. A 4 f system, comprising two lenses, was used to filter and image the

response of the metasurface onto a CCD camera. Lens 1 performs the Fourier operation required

to retrieve the complex (amplitude and phase) spectrum of the signal in k-space. The generated

Fourier spectrum (at the focal plane of lens 1) was filtered in k-space from higher diffraction

orders (using an iris) before it was transformed back to real space via an inverse Fourier operation

performed by lens 2. The output beam with its desired polarization behavior was then recorded

using a CCD camera positioned at the output focal plane of lens 2 (z=0 plane). To characterize

the polarization behavior of the output beam, we performed polarization measurements based

on Stokes polarimetry. This enabled the determination of the full, four-component polarization

Stokes vector, which quantifies the shape and orientation of the polarization ellipse at each point

as well as the beam’s intensity and degree of polarization. The Stokes parameters were obtained
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by rotating a polarizer and a QWP before the CCD to analyze for different polarization states:

0◦,45◦,90◦,135◦, LCP and RCP.

The measured spatial distributions of Stokes parameters in Fig. S11(b) are in close resemblance

with the theoretical expectations (Fig. S11(c)). We anticipate that the deviation of the imparted

polarization transformation from the target response stems in part from imperfections in the

metasurface fabrication as well as the design limitations. Specifically, the retardance of nanofins

comprising the meta-atom library was simulated under the assumption of periodic boundary

conditions, which is not entirely valid as the target polarization response is spatially varying. The

deviation from this assumption, particularly significant near the edge of the metasurface, along

with small variations in the actual nanofin dimensions, can collectively lead to undesired residual

shape-induced birefringence that distorts the intended retardance of the individual nanofins.

III. CHARACTERIZATION OF ST MERONS

A. Spatio-temporal spectral intensity

The plane at which the metasurface is placed in the setup corresponds to the Fourier plane

(kx,ky) of the synthesized ST merons. To capture the spatiotemporal spectral intensity I(kx,ky;λ)=

|ψ̃(kx,ky;λ)|2, we image the metasurface plane with a 4 f system ( f=300 and f=100 mm lenses) to

CCD2 (The ImagingSource, DMK 33UX178). Meanwhile, we filter out all diffraction orders except

for +1 generated by the metasurface, as described in Section II D 3. We plot the measured spectral

intensity profile I(kx,ky) on the surface of the spatiotemporal spectral surface as a colormap

(Fig. 3B-D and Fig. 4B-D of the Main text).

Because the camera is not wavelength-sensitive, we reconstruct the temporal spectrum in

two steps. We first scan a fiber tip connected to an optical spectrum analyzer (OSA) along

the horizontal axis x1 after the spectral analysis stage and determine the spatial chirp x1(λ), as

described earlier in Section II A 2 and Fig. S3(b). In the second step, we verify experimentally

the combined impact of the spectral transformation and the coordinate transformation by scanning

a vertical slit horizontally along x1 and measuring the radius r(x1) of the annulus formed at

the output of the coordinate transformation. By combining these two measurements, we obtain

the spatial chirp along the radial direction r(λ) after the combined spectral and coordinate

transformations. Finally, we obtain spatiotemporal spectrum kr(λ) by converting from the
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FIG. S11. (a) Metasurface optical characterization. The metasurface is illuminated with a linearly polarized

quasi-plane wave. Its output response is filtered and imaged using a 4-f lens system onto a Stokes

polarimeter which comprises a polarizer and QWP in front of a CCD sensor to measure the full Stokes

parameters (and polarization response) of the device. (b) Experimentally measured Stokes parameters of

the metasurface and (c) corresponding theoretical calculations.

physical space to Fourier space kr=k r
f , where k= 2π

λ is the wave number, and f=300 mm is the

focal lens of the Fourier-transforming lens. Using measurements of λ(kr) obtained this way, we

plot 3D spatiotemporal spectral surfaces of the ST merons in Fig. 3D and Fig. 4D of the Main text.

This method of course provides the spatiotemporal spectral intensity profile averaged over all

polarization states because the camera is polarization-insensitive. We perform Stokes polarimetry

in the spectral domain to capture the spin texture.
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B. Spectral Stokes polarimetry

To characterize the spin texture of ST merons in the spectral domain, we carry out spatially-

resolved Stokes polarimetry in the Fourier plane (kx,ky) as mentioned above. We use a con-

ventional setup for Stokes polarimetry [4] comprising a polarising beam splitter (PBS, Thorlabs

PBS252) projecting the polarization into two orthogonal states, a pair of cameras CCD1 and

CCD2 (The ImagingSource, DMK 33UX178) capturing both ports of the PBS, a half-wave plate

(HWP), and a quarter-wave plate (QWP) to modify the basis for polarization analysis. Using

this configuration, we measure the spectral intensity of the field I(kx,ky,λ) corresponding to the

polarization states H (horizontally polarized), V (vertically polarized), +45◦,−45◦, RCP (right cir-

cularly polarized), and LCP (left circularly polarized), from which we calculate normalized Stokes

parameters s0(kx,ky,λ),s1(kx,ky,λ),s2(kx,ky,λ) and s3(kx,ky,λ) in the spectral domain (Fig. 3A and

Fig. 4A, first row). The measured Stokes parameters match the target profiles shown in the second

row of Fig. 3A and Fig. 4A.

Subsequently, in Fig. 3b-d and Fig. 4b-d (arrows), we represent the spin texture of the ST

merons via a three-component unit vector field n(kx,ky,λ) as defined in Eq. S2 [28, 29]. From the

plots of spin texture in Fig. 3b and Fig. 4b the qualitative resemblance of the meron texture is

clear – n̂=ẑ near the center kr=0, and n̂⊥ẑ near the edges kr=kmax
r , as discussed in Section I and

Fig. S1. For a quantitative comparison of the measured spin texture with the target meron texture

we calculate the Skyrmion number using a topological method described in the next section [30].

Using this method, we measure the Skyrmion number of Q=0.43 for the double-paraboloid ST

meron (Fig. 3b, inset) and Q=0.41 for the spinning-top ST meron (Fig. 4b, inset), both of which

are very close to the target value of Q=0.5 for a meron quasi-particle.

C. Extracting Skyrmion number from the measurements of Stokes parameters

We extract the Skyrmion number from the measurements of Stokes parameters s1,s2,s3 using

a topological method introduced for paraxial optical skyrmions [30]. The Skyrmion number is

calculated via a line integral around the intensity singularity point as opposed to the gradient

of the spin texture, which improves the accuracy of measurement as the gradient is limited
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within the aperture of the experimental system and is extremely sensitive to noise. Following this

method, we determine the Skyrmion number

Q=
1
2

(
∑s(j)

3 N(j)−s(∞)
3 N(∞)

)
, (S20)

where N=(2π)−1
∮
∇Φ·dl is the winding number at the jth inner singularity and at the beam

periphery (∞), s(j)
3 and s(∞)

3 are the Stokes parameter s3 at these two locations, and Φ=arg(s1+is2)

[30]. Singularities are located where s1,s2→0 and within the context of our work there is only one

singularity j=1 located at the beam center, as seen in Fig. S11 (b). We evaluate s(1)3 by averaging

over a square of 10×10 pixels centered at the location of the singularity, whereas s(∞)
3 is calculated

by averaging the values of s3 lying along a circular path near the edge of the beam centered on

the beam center. The winding number N in Eq. S20 describes the number of turns completed by

n on the Poincaré sphere along a path surrounding the singularity. Computationally, plotting

the Stokes phase Φ reveals the location of singularities and the corresponding winding numbers.

We determine N by counting the number of peaks in the angular direction of the polar plot of Φ

around the singularity (N(1)) and near the edge of the beam (N(∞)).

Using this methodology, we extract the Skyrmion number from the experimental data of the

birefringent metasurface (Fig. S11(b)), open-surface ST meron (Fig. 3(a) of the Main text), and

a close-surface ST meron (Fig. 4(a) of the Main text). In Fig. S11(b) we choose the periphery

circle of radius r(∞)≈6.1 mm and obtain Skyrmion number of Q≈0.416, which is very close to the

theoretically expected number of Qth=0.418 from Eq. S15-S17. We anticipate that the source of a

slight deviation of δQ≈0.02 is an imperfection in metasurface fabrication described above. For

the open-surface (Fig. 3(a)) and closed-surface ST meron (Fig. 4(a)), we select k(∞)
r ≈150 rad/mm

and obtain a Skyrmion number of Q≈0.41 and Q≈0.42 respectively. Note that for the spin

distribution in the form of Eq. S15,S16 the Skyrmion number of Q=0.5 would be obtained for

k(∞)
r →∞. Alternatively, one could design a different spin distribution function that would result

in Q=0.5 at the edge of a finite beam.

D. Spatiotemporally resolved Stokes polarimetry

We measure the spatio-temporal evolution of the spin texture of ST merons in the physical

space by carrying out Stokes polarimetry in the common path of the Mach-Zehnder interferometer

(Fig. S2). In the first (reference) arm of the interferometer, we have the initial 100-fs linearly polar-
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ized plane-wave pulse from the input laser passing through a controllable optical delay line τ and

half-wave plate (HWP). In the second arm, we place the ST meron synthesis setup that produces

an optical field with a nontrivial polarization profile. When two wave packets are combined using

a beam splitter to co-propagate collinearly, we observe spatially-resolved interference fringes on

the CCD3 (TheImagingSource, DMK 27BOP031), and from the visibility of fringes, we calculate

the intensity profile of the ST meron [31, 32]. To maximize the interference fringes, we place

a linear polarizer in front of CCD3, which projects both pulses into one polarization state [33].

By sweeping the delay line τ, we record a collection of spatially-resolved intensity profiles and

construct spatio-temporally resolved intensity profile IP(x,y;τ) of the ST meron projected into

the certain polarization state. We repeat the procedure for different polarization states (H, V,

+45◦,−45◦, RCP, and LCP) via rotating the axis of the polarizer and using HWP/QWP to measure

all four spatio-temporally resolved Stokes parameters, i.e. si(x,y;τ) for i=0,1,2 and 3. For better

visualization, in Fig. 3E and Fig. 4E, we show 2D plots of Stokes parameters at y=0 cross-section.
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