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Abstract— Fibrous proteins, such as elastin and collagen, are crucial for the structural integrity of the cardiovascular
system. For thin tissue-engineered heart valves and surgical patches the two-dimensional mapping of fiber orientation is
well-established. However, for three-dimensional (3D) thick tissue samples, e.g. the embryonic whole heart, robust 3D
fiber  analysis tools are  not  available.  This information is  essential  for  computational  vascular  modeling and tissue
microstructure characterization. Therefore, this study employs machine learning (ML) and deep learning (DL) techniques
to analyze the 3D cardiovascular fiber structures in thick samples of porcine pericardium and embryonic whole hearts. It
is hypothesized that ML/DL-based fiber orientation analysis will outperform traditional Fourier transform and directional
filter methods by offering higher spatial accuracy and reduced dependency on manual preprocessing. We trained our
ML/DL models on both synthetic and real-world cardiovascular datasets obtained from confocal imaging. The evaluation
used a  mixed dataset  of  1147 samples and a  porcine/bovine dataset  of  536  samples.  After  applying augmentation
techniques, the dataset size increased to 5649 images. Support Vector Regression (SVR) demonstrated the highest
accuracy, achieving a Mean Absolute Percentage Error (MAPE) of 5.0% on the mixed dataset and 13.0% on the biological
dataset.  Among DL models,  Convolutional Neural Network (CNN) and Residual Network-50 (ResNet50) had MAPE of

12.0%  and  11.0%  on  the  mixed  dataset,  and  23.0%  and  22.0%  on  the  biological  dataset,  respectively.  Attention
mechanisms improved performance further, with the Channel Attention ResNet50 achieving a MAPE of 5.8% on the
mixed dataset and 21.0% on the biological dataset. These findings highlight the potential of ML and DL techniques in
improving 3D fiber orientation detection, enabling detailed cardiovascular microstructural assessment. 

Index Terms— Collagen, elastin, fiber orientation, machine learning, deep learning, tissue engineering, biomedical
imaging, embryonic heart, pericardium

1. INTRODUCTION

Fibrous  proteins,  particularly  collagen  and  elastin  fibers,  play  a  critical  role  in  shaping  the  structural  framework  of  the

cardiovascular system [1]. These fibers are integral to the formation and function of cardiovascular tissues, including arteries,

veins, and heart valves  [2, 3]. Except the baseline endothelial membrane, cardiovascular tissues are rarely 2D and complete

mapping  require  a  3D  analysis.  Understanding  the  orientation  of  collagen  fibers  holds  particular  significance  in  thick





cardiovascular tissues such as porcine pericardium and whole heart ventricles [4-7]. The integrity of the cardiac tissues depends

on the  precise  alignment  of  its  structural  fibers,  primarily  collagen  and  elastin  [8,  9].  Moreover,  quantitative  mapping  of

microstructural  fibers  is  essential  in  cardiovascular  tissue  engineering,  e.g.  artificial  surgical  patches,  to  track  changes  in

mechanical properties in vivo [10] and to optimize fiber orientation in artificial constructs [11, 12]. By ensuring accurate fiber

alignment, these synthetic tissues can closely resemble the mechanical properties and functions of the biological cardiovascular

tissues and enhance durability and surgical outcome.

In the literature, a myriad of 2D methods are proposed to determine the orientations of fiber structures. These include 2D

Fourier  transform  [13,  14],  Hough transform  [15,  16],  directional  filters  [17-19],  intensity  derivatives  [20-22] or  intensity

variation [23], fiber tracking algorithms [24, 25], and edge detection [26]. However, 3D fiber mapping, as focused on the present

paper, is limited to our knowledge. Among the 2D methods, derivative-based techniques can provide pixel-level orientation

information,  but  they  often  require  additional  algorithms  to  identify  the  edges  of  the  fibers  across  the  entire  image  [27].

Transform or filter-based methods such as Fourier Transform or Hough Transform typically involve defining an interrogation

window to obtain fiber direction within that window [28]. For fiber tracking algorithms, it is necessary to develop an algorithm

that considers the spread direction of each fiber family  [29]. These traditional 2D methods have several disadvantages when

applied to 3D fiber analysis. First, they often lack the ability to capture the full spatial complexity and orientation of fibers in 3D.

Second, these methods typically require extensive preprocessing and post-processing steps, making them less efficient and more

prone to errors. Additionally, they may not generalize well to different types of tissues or varying imaging conditions.

Advances  in  Machine Learning  (ML) and  Deep Learning  (DL)  offer  new avenues  for  more  accurate  and  efficient  fiber

analysis, as undertaken very recently [30-34]. For instance, Zeng et al. introduced FOD-Net, a deep learning method for fiber

orientation distribution angular super-resolution [30]. Nath et al. demonstrated that deep learning techniques could capture more

accurate diffusion fiber orientation distributions than constrained spherical deconvolution [31]. Similarly, Karimi et al. developed

a model to estimate the fiber orientation distribution function from diffusion-weighted Magnetic Resonance Imaging (MRI) [32],

while Lucena et al. enhanced fiber orientation estimation using convolutional neural networks [33]. Lin et al. presented a fast-

learning  approach  for  MR tractography  using  a  convolutional  neural  network  [34].  However,  most  of  these  studies  have

concentrated on 2D data analysis or utilized clinical  imaging modalities like MRI, which are suited for macroscopic tissue

assessments  but  lack the  resolution  needed for  3D fiber  mapping.  For  example,  Lee  et  al.  [35] employed ML models  on

multiparametric quantitative MRI data to evaluate collagen fiber orientation and proteoglycan content in articular cartilage.

While impactful, these approaches reveal a gap in methods for high-resolution 3D fiber analysis. This emphasizes the need for

novel techniques tailored to complex biological samples,  such as those analyzed through confocal microscopy. Pham et al.

present a DL model based on convolutional neural networks (CNN) for the classification and characterization of  histology

images. The proposed CNN model achieves over 97% accuracy in classifying normal and scar tissue, providing quantitative

insights into collagen fiber density and directional variance [36]. Current studies  have highlighted the potential of deep learning

in cardiovascular image analysis, including heart disease detection through cardiac sounds [37] and cardiac image segmentation

[38, 39].

In this study, we address this gap by introducing two novel approaches for 3D fiber orientation mapping. The proposed

methods  employ  a  robust  local  reconstruction  technique,  leveraging  orthogonal  2D  fiber  analyses  (xy  and  xz  planes)  to

reconstruct comprehensive 3D fiber orientations. Additionally, the Fast Fourier Transform (FFT) algorithm is included as a

benchmark to  assess  the comparative performance of  our approaches.  A significant aspect  of  our  methodology lies in  the



integration of  domain-specific preprocessing steps  and the exploration of  advanced ML/DL techniques,  including attention

mechanisms such as channel attention and Convolutional Block Attention Modules (CBAM). These attention mechanisms were

incorporated to enhance the analysis and evaluate their potential impact on predictive accuracy for fiber orientation mapping in

thick cardiac tissues, contributing to a comprehensive comparison of methodologies. To validate our methods, we utilized a

combination  of  synthetic  datasets  generated  via  diffusion  models  [40] and  real-world  data  acquired  from  3D  confocal

microscopy.  Synthetic  datasets  include  diverse  fiber  arrangements,  such  as  toroidal  structures,  while  real-world  samples

encompass thick cardiovascular tissues and embryonic heart specimens. This approach allows us to benchmark the performance

of our methods across a wide range of fiber orientations and imaging conditions. This manuscript is organized as follows: First,

we detail the generation of synthetic datasets and the acquisition of real-world images, followed by a comprehensive description

of our methodology, including the reconstruction process and integration of ML/DL techniques. We then present a comparative

analysis of our methods against the FFT benchmark, evaluating their performance in terms of accuracy, computational efficiency,

and adaptability to various fiber structures. Finally, the Discussion section critically evaluates the results, highlights potential

limitations, and suggests avenues for future research.

2. METHODOLOGY
The given 3D image containing fiber information was divided into smaller volumetric  interrogation volumes, or  voxels,  to

facilitate analysis. Using at least two 2D fiber direction analysis the local 3D reconstruction is achieved based on the voxel cross-

sectional images along the xy- and xz- axes of the 3D image volume in Figure 1. The voxel data obtained from the xy- and xz-

axes are aggregated the orientation information within each voxel, determining the resultant vector and primary orientation

angle, θ, relative to a reference plane. This quantitative measure provides insight into the fiber orientation within the 3D space.

To conduct this 3D analysis, we employed two new ML/DL models: Support Vector Regression (SVR) and CNN, described in

Section 2.2, Section 2.3 and Section 2.4, respectively. The traditional FFT-based approach (Section 2.5), which does not involve

ML/DL, is also included as a benchmark for comparisons. While FFT remains a well-established technique for frequency and

orientation analysis, it primarily serves as a benchmark in this study. Existing ML/DL methods for fiber orientation mapping are

limited to 2D analyses or clinical imaging modalities, such as MRI, which differ fundamentally in resolution and scope from the

confocal microscopy datasets used in this research. Consequently, the methods proposed here represent a novel framework for

3D fiber orientation analysis in thick cardiac tissues, addressing challenges related to complex fiber arrangements and imaging

noise.

2.1 Datasets

2.1.1 Synthetic Datasets
2D  Data: In  our  approach  to  synthesizing  fiber-collagen  images,  a  diffusion  model  was  employed  to  generate  diverse

representations.  Initially,  key  parameters  such  as  fiber  orientation,  fiber  density,  and  structural  complexity  were  precisely

selected, forming detailed textual descriptions for the diffusion model [31]. These descriptions served as inputs to the diffusion

model, guiding the generation process to produce high-resolution images with resolutions typically exceeding 1024x1024 pixels.

By systematically varying these parameters, the creation of a comprehensive dataset encompassing a wide spectrum of fiber-

collagen  structures  was  ensured.  This  augmentation  enriched  our  training  corpus  with  a  multitude  of  synthetic  examples,

facilitating a  thorough exploration of  fiber-collagen morphology.  Ultimately,  our approach yielded 8 high-quality  synthetic



images, later cropped by 50x50 to form a total of 611 training samples, providing desired diversity to our training dataset and

resulted a robust model training.

3D Data: In this study, we focused on the generation of data regarding a three-dimensional toroidal structure and its subsequent

decomposition  into  a  series  of  two-dimensional  cross-sectional  images.  To  achieve  this,  a  customized  algorithm  was

implemented, taking into consideration the geometrical properties of a torus, defined by the parametric equations [32]:

x(θ, φ) = (R + r * cos(θ)) * cos(φ)       (1)

y(θ, φ) = (R + r * cos(θ)) * sin(φ)  (2)

z(θ, φ) = r * sin(θ)  (3)

The algorithm allows control over torus geometrical parameters, including its major and cross-sectional radii (R and r), as well

as angular parameters (θ and φ). It generates a point cloud data of size MxN, where M represents the number of torus strings and

N is the number of points in each string  [33]. A torus gap with an angular extent is incorporated to introduce complexity for

analysis and serve as a spatial marker. Additionally, the torus can be rotated in 3D to align its normal vector with a desired plane

using rotation matrices. 

 

Figure 1: Cartoon representation of a thick 3D cardiovascular tissue of whole heart. (b,c) The pre-processed visualization along the xz and

xy-axis using raw data. (d) 3D rendering highlighting the spatial organization of collagen fibers.



2.1.2 Biological Data
Early embryonic  whole-heart samples: Fertile  white Leghorn eggs are incubated according to  IRB approved guidelines.

Microfil agent, 2 µl∶5 µl∶5 µL; dye: diluent buffer: curing agent, is given to the apex of the avian embryo heart  in ovo culture

(MICROFIL®Injection  Compounds,  Flow Tech,  Inc)  for  vessel  filling.  The embryos  were  harvested  in  fresh  chick  ringer

solution at Hamburger Hamilton (HH) stage 25 and fixed in 4% (wt/vol) paraformaldehyde [41]. This challenging dataset was

specifically used as a Use Case of our ML algorithm. 

Pericardium samples: Healthy porcine hearts were obtained from Koc University Hospital RMK AIMES immediately post-

mortem, adhering to ethical guidelines. The pericardium was carefully dissected, rinsed with sterile saline to remove blood and

debris, cut into 1 x 1 cm pieces, and fixed in 10% formalin. In addition, clinically approved porcine (BioIntegral Surgical, Inc.,

Canada)  and  bovine  pericardium  (Edward  Lifesciences)  samples  were  cut  into  1  x  1  cm  sections.  These  sections  were

permeabilized with 0.1% Triton X-100 in PBS for 2 hours, then blocked with 5% BSA in PBS for 2 hours at room temperature to

prevent non-specific binding. The sections were incubated overnight at 4°C with a primary antibody against collagen I (mouse

anti-collagen I) diluted 1:200 in 1% BSA in PBS. After washing with PBS, sections were incubated with Alexa Fluor® 488-

conjugated anti-mouse IgG secondary antibody for 2 hours at room temperature in the dark. Stained sections were mounted on

glass slides using an anti-fade mounting medium compatible with confocal microscopy. 

Cardiac tissue imaging: Confocal microscopy imaging was performed using a 488 nm laser for Alexa Fluor 488. Z-stack

images were acquired to capture 3D representations of collagen I distribution within both porcine pericardium and embryonic

heart. Confocal microscopy were converted into 3D and visualized in xy- and xz-axes. For the algorithm, a total of 536 bovine

and porcine samples were collected. This dataset was used to train and test the performance of both FFT and ML algorithms,

with an 80/20 split for training and testing, respectively.

2.1.3 Training Data:
The training dataset comprises both biological and synthetic data to ensure robust model generalization. A total of 15 distinct

samples were obtained from five different patches of clinically approved porcine, biological porcine and bovine pericardium, as

shown in  Supplementary  1.  Each  sample  was  subdivided  into  50×50  voxel  regions,  resulting  in  536  biological  samples.

Additionally, a diffusion model was employed to generate 8 high-resolution synthetic images, which were further divided into

50×50 voxel segments, yielding 611 synthetic samples. Collectively, the biological and synthetic data constituted a mixed dataset

of 1147samples. To improve model robustness and generalization, data augmentation techniques, including rotations, scaling,

and noise addition, were applied, expanding the dataset to 5649 samples while introducing variability in fiber orientations and

imaging conditions. Additionally, the training dataset was carefully balanced across different fiber orientation angles to prevent

the model from overfitting to specific angles. This ensured that the model did not learn certain orientations more than others,

thereby improving its  ability to generalize across diverse fiber structures.  Post-processing was performed on the biological

images to ensure data quality by eliminating non-fiber regions, thereby retaining only relevant fiber structures. This refinement

step minimized noise and ensured that the model was trained on high-quality fiber orientation data. To prevent data leakage, the

synthetic images used for training were completely distinct from those used in testing. These synthetic images were designed to

replicate real-world fiber structures, enhancing the model’s ability to distinguish fiber orientations and adapt to complex tissue

architectures.



2.1.4 Testing Data
The testing dataset was designed for both 2D and 3D verification, incorporating synthetic and biological data. For 2D validation,

MATLAB-generated linear structures with controlled orientations and two separate high-quality synthetic images from diffusion

models (distinct from those used in training) were included. For biological validation, a total of six samples were analyzed,

obtained from three different patches (porcine and bovine), with two samples per patch, as shown in Supplementary 2. This

approach ensured a comprehensive evaluation of fiber orientation variability across different anatomical sources and locations.

These biological samples included clinically approved bovine and porcine pericardium as well as biological porcine pericardium,

providing detailed insights into fiber orientation consistency and structural differences across tissue types. For 3D verification,

the chick embryo heart dataset, containing detailed 3D fiber structure information, was used to evaluate the model’s capability in

reconstructing  volumetric  fiber  orientations.  No  overlap  existed  between  training  and  testing  biological  samples,  ensuring

unbiased evaluation.

2.2 Support Vector Regression
Histogram of gradients (HOG) feature extraction technique was utilized to capture the fine details of fiber orientations within the

images. HOG is renowned for its robustness in identifying edge structures by computing the gradient orientations of localized

regions within an image [42]. For each image, the method involved dividing the image into small, connected regions called grid,

and for each grid, compiling a histogram of gradient directions or edge orientations. By normalizing these histograms across

larger regions of the image, invariance to the changes in illumination and shadowing was achieved. To determine the optimal

grid size for feature extraction, various grid sizes such as 4x4, 8x8, 16x16, and 32x32 were tested. After extensive testing, it was

found that the 32x32 grid size provided the best balance between detailed feature capture and computational efficiency for our

image size 1024 x 1024. However, to avoid missing small details with the large grid size, all features from 4x4, 8x8, 16x16, and

32x32 were used.  This  configuration resulted in  a comprehensive feature set  that  effectively characterizes  the patterns  and

structures underlying fiber-collagen arrangements, providing a solid foundation for subsequent ML tasks.

Following feature extraction, SVR technique was employed to train the regression model. SVR is particularly adept at handling

high-dimensional feature spaces and is capable of learning complex mappings between input features and target values. As

illustrated in Figure 2, the SVR model was trained to predict the actual fiber orientation angles from the extracted HOG features.

By utilizing a kernel function, the non-linear relationships within the data were managed, enhancing predictive accuracy. A grid

search was conducted to find the optimal hyperparameters for the SVR model, considering different kernel types, i.e. linear and

radial  basis  function  (rbf),  regularization  parameters  (C),  and  kernel  coefficients  (gamma).  This  optimization  approach,

facilitated by cross-validation techniques,  ensured robustness  and generalization of  performance,  making the SVR model  a

reliable tool for analyzing and predicting fiber orientations even in test data.



      
Figure 2:  Process  of  estimating fiber  orientation using both synthetic  and biological  datasets.  Synthetic  images are generated through

diffusion models, creating diverse fiber patterns, which are then compared with actual biological fiber images captured via microscopy.

Feature extraction is performed on both datasets using HOG, emphasizing the directionality and distribution of fiber orientations. These

features are subsequently input into a SVR model, where the input layer consists of feature vectors processed through kernel functions in the

hidden layer. The output layer sums these contributions to predict fiber orientation. The analysis culminates in detailed orientation maps,

exemplified by yellow arrows on a sample image, providing comprehensive insights into the structural organization of fibers in synthetic and

biological samples.

2.3 Convolutional Neural Network Training

In the deep learning phase, a CNN was utilized to analyze and discern complex spatial relationships within the fiber orientation

data. CNNs are particularly well-suited for fiber image analysis task due to their ability to learn hierarchical representations of

data through layers of convolutional filters  [43]. Our CNN architecture included two convolutional layers, each followed by

activation functions and pooling layers, which contributed to robust feature extraction and representation. Specifically, the model

consisted of an input layer for 50x50 grayscale images, multiple convolutional layers with ReLU activation and max-pooling,

followed by  dense  layers  with  dropout  for  regularization.  We applied  data  augmentation  techniques  like  random rotation,

translation, and horizontal flipping to enhance the model's generalization. The model was trained with the Adam optimizer for

200 epochs and Mean Absolute Error (MAE) was used as a loss function.



2.3.1 Transfer Learning

To further enhance the performance and efficiency of DL models, transfer learning was leveraged, incorporating pre-trained

CNN models from well-established architectures such as ResNet50 [44]. Transfer learning involved using models that had been

pre-trained on large image datasets, such as ImageNet, which contains millions of images across thousands of categories. Fine-

tuning  the  pre-trained  model  involved  selectively  unfreezing  and  retraining  specific  layers,  allowing  the  model's  learned

representations to adapt to the nuances of the fiber orientation dataset. This approach allowed for accelerated convergence, as the

models required fewer epochs to adapt to the dataset.

2.3.2 Attention Mechanisms
To enhance the model’s ability to focus on the most relevant regions and features of the images, attention mechanisms are

incorporated into the architecture [45]:

Channel Attention:  This mechanism emphasizes critical  feature channels by calculating a learnable scaling factor  through

global average pooling and dense layers. It effectively highlights channel-specific information crucial for accurate predictions.

Spatial Attention: Spatial attention highlights significant spatial regions within the feature maps. By aggregating pooled feature

maps (max and average) and passing them through a convolutional layer, the model dynamically focuses on regions relevant to

fiber orientation.

2.4 Fast Fourier Transform (Benchmark)

Fiber orientation can be obtained based on the variability of voxel intensities in all directions within a 3D image stack using the

3D FFT [49]. In our approach, we divide a slice into typically 50x50 grids, resulting in smaller-sized images. Subsequently, a 2D

FFT is applied to each of these smaller images. The vectors are then obtained using the 3D analysis method.

In the analysis of biological data, artifacts present in images can lead to the emergence of "bad” fiber directions (vectors)

disrupting the accuracy of angle estimation in FFT analysis. To address this issue, we initially applied FFT to the entire image to

obtain the frequency spectrum and identified the angle corresponding to the maximum amplitude. Vectors deviating within a

range of 0-20 degrees from this dominant angle were classified as bad vectors. These vectors were removed, and the image was

adjusted to align with the most dominant angle present.

2.5 Performance Evaluation

The primary performance metric for evaluating our regression models was the Mean Absolute Percentage Error (MAPE). MAPE

offers a clear and intuitive measure of the average magnitude of errors between the predicted and actual fiber orientation angles,

expressed as a percentage. It is calculated as the average of the absolute percentage differences between predicted values and the

ground truth  values,  providing  a  straightforward  assessment  of  prediction  accuracy.  Specifically,  MAPE is  defined by  the

formula:

MAPE=1
n∑i=1

n

¿
y i− ŷ i
yi

∨¿100

wherey i represents the actual fiber orientation angle,  ŷ iis the predicted angle, and n is the total number of predictions. Using

MAPE as our primary performance metric allowed the overall accuracy of our both FFT and ML models in predicting fine-



grained  fiber  orientations.  Lower  MAPE  values  indicate  better  model  performance,  reflecting  more  precise  and  accurate

predictions. By systematically analyzing the MAPE of our models, we could identify specific areas where our models excelled

and where further improvements were necessary. This metric was instrumental in guiding the iterative refinement of our models,

ensuring that we progressively enhanced their predictive capabilities and robustness.

3. RESULT

3.1 3D FFT Approach (Benchmark)

We create benchmark results using our FFT method with two different datasets: synthetically generated data and bovine/porcine

data. The determination of angles for diverse linear structures was accomplished using a 2D FFT technique, enabling the analysis

of signal components along various directions. For the synthetic dataset, lines were generated using a script and positioned at 45,

60, and 135 degrees, as illustrated in Figure 3. The analysis revealed a slight 2-degree deviation from the anticipated 180-degree

angle,  suggesting that the method effectively discerns the angles formed by the linear structures with respect to the x-axis,

achieving a notable accuracy rate of 98.9%.

Figure 3: FFT Analysis for 2D Synthetic Data. (a-d) Lines with 45, 60 and 135 degree angles are produced as binary scale using MATLAB,

and the graph of the analysis results is shown using 2D FFT and x axes represent to angle of line, y axis represent to frequency spectrum.



The orientations of fiber structures in clinically approved and biological porcine slices were similarly analyzed using 2D FFT,

as depicted in Figure 4. For clinically approved bovine samples, a dominant fiber orientation at 130 degrees was recorded, with a

deviation of 3.8% in Figure 5. In contrast, clinically approved Porcine samples exhibited a dominant orientation at 140 degrees,

with a deviation of 11.1%, indicating a 7.3% increase compared to  clinically approved  bovine. biological porcine showed a

dominant  fiber  orientation  at  135  degrees,  with  a  deviation  rate  of  8.3%.  These  angles  are  measured  with  respect  to  the

apicobasal direction of the heart.

 



Figure 4:  Comparison of  fiber  orientation estimation in  different  tissue samples  using FFT and SVR.  The top row (a-c)  shows fiber

orientation maps (red arrows) overlaid on green fluorescence images for clinically approved bovine (a), clinically approved porcine (b), and

biological porcine (c) tissues analyzed using FFT. The corresponding histograms (d-f) depict the distribution of fiber angles obtained from

FFT analysis, with angles ranging from 20 to 160 degrees. The bottom row (g-i) displays fiber orientation maps (red arrows) for the same

tissue samples analyzed using SVR. The associated histograms (j-l) show the distribution of fiber angles derived from SVR analysis, with



angles  concentrated around 100 degrees.  This  comparison highlights  the differences in  fiber  orientation results  between FFT and SVR

methods across different tissue types.

To  further  explore  potential  statistical  differences  among  clinically  approved  bovine,  clinically  approved  porcine,  and

biological porcine samples, an ANOVA test was conducted. The results suggested that there was no statistically significant

variation in the dominant fiber orientations among the three groups.

Figure 5:  Analysis of  Fiber Orientation via 2D FFT for clinically approved bovine, clinically approved porcine, and biological porcine

samples. sixth samples were analyzed for each case, illustrating the mean angle of fiber orientation accompanied by standard deviation lines.

These sixth samples consist of two samples from third different pericardia, with two different locations each, providing comprehensive insights

into fiber orientation variability across different anatomical sources and locations

3.2 Validation of the 3D Representation
We validated the 3D vector integration method using FFT with a synthetic dataset. The 3D FFT method was applied to datasets

of three-dimensional helical and toroidal structures to determine vector orientations. For the helical structure, the dataset with

dimensions  of  900x900x900  pixels  was  divided  into  30x30x30  pixel  grids,  generating  a  total  of  30x30x30  vector  maps.

Similarly, the toroidal structure, with the same dimensions, was processed to create 30x30x30 vector maps. Each vector was

mapped to the nearest point on the respective structures and interpolated to ensure continuity. The method demonstrated a mean

accuracy of 97% for the helix and 91.8% for the torus, as shown in Figures 6a and 6b. 



Figure 6: 3D Synthetic Torus Analysis Using 3D FFT.  (a, b) Combined visualization showing the 3D structure of the helix and torus with

detailed fiber orientation analysis using 3D FFT. 

3.3 Performance of ML\DL Models

In our study, we employed both SVR, CNN, ResNet50 with attention mechanism to analyze the orientation of collagen fibers in

various tissue samples. 

In Table 1, SVR emerged as the most accurate Machine Learning model, achieving a MAPE of 5.5% on the mixed dataset,

which corresponds to an average error of 10 degrees. This indicates that SVR can predict fiber orientation with a high degree of

accuracy. However, its performance on the biological dataset was lower, with a MAPE of 13%.



Table1: Performance comparison of different models used in our analysis across the mixed and biological datasets. The values

represent the error rates (±± standard deviation). SVR denotes Support Vector Regression, CNN represents Convolutional Neural

Network, ResNet50 refers to Residual Neural Network, CBAM Attention CNN indicates the Convolutional Block Attention

Module applied to CNN, and Channel Attention ResNet50 represents ResNet50 integrated with a channel attention mechanism.

Among the deep learning models, the CNN yielded a MAPE of 12 ± 3.7% on the mixed dataset, corresponding to an average

error of approximately 21 degrees, and 23 ± 2% on the biological dataset, with potential for improvement through parameter

tuning and augmentation. ResNet50 performed slightly better, achieving a MAPE of 11 ± 0.4% on the mixed dataset and 22 ±

1.1% on the biological  dataset.  Incorporating attention mechanisms further enhanced the models'  performance. The CBAM

Attention CNN achieved a MAPE of 11 ± 0.6% on the mixed dataset and 18 ± 0.9% on the biological dataset, while the Channel

Attention ResNet50 achieved the best performance among the deep learning models, with a MAPE of 5.8 ± 0.4% on the mixed

dataset and 21 ± 1% on the biological dataset, highlighting the effectiveness of attention mechanisms in improving prediction

accuracy. Compared to these, the SVR model demonstrated robust performance, achieving a MAPE of 5 ± 0.2% on the mixed

dataset and 13 ± 0.7% on the biological dataset, making it the most accurate approach for further analysis.

3.4 Test of SVR model with real data
Finally, we validated the SVR method using two different datasets: synthetically generated data and bovine/porcine collagen

data. To demonstrate the reliability of our model, we first analyzed synthetic collagen fiber structures generated by the diffusion

model, using SVR to determine fiber orientations. Figures 7a and 7d depict the overall fiber structures, with red arrows indicating



the orientations predicted by SVR. Detailed views in Figures 7b and 7e focus on the specific fiber orientations within the yellow-

highlighted areas  of  Figures  7a  and 7d,  respectively.  The angle  distribution  histograms in  Figures  7c  and 7f  quantify  the

orientation angles of the fibers. In Figure 7c, the histogram reveals distinct peaks around 25° and 125°, indicating a strong

preferential alignment of fibers at these angles in the synthetic model. This result suggests that the diffusion model effectively

generates  specific  alignment  patterns  captured  by  SVR.  Conversely,  the  histogram in  Figure  7f  exhibits  a  more  uniform

distribution of fiber angles, reflecting the diverse and complex orientations in the synthetic dataset generated by the diffusion

model. The circular structure of the image contributes to this uniform distribution of angles from 0° to 180°.

To further assess the accuracy of our models, we analyzed 2D collagen images from various sources. Figure 4 presents the

results for nine images. The clinically approved bovine collagen sample displayed a predicted orientation marked by a red arrow,

along with the corresponding angle distribution histogram.

Figure 7: Visual representation and angle distribution of collagen fiber orientation. (a) and (d) show the collagen fiber structures obtained

from the diffusion model. (b) and (e) are magnified views of the yellow highlighted areas in (a) and (d), respectively, providing a detailed view

of fiber orientation within those regions. (c) and (f) are angle distribution histograms corresponding to the fiber structures shown in (a) and

(d), respectively. 

Figure 4j illustrates a predominant orientation of approximately 120 degrees, with variations ranging between 100 and 140

degrees. The clinically approved porcine collagen sample shown in Figure 4h exhibited predicted orientations at 100 and 120

degrees, highlighted by the red arrow, while the angle distribution histogram in Figure 4k displayed variations between 90 and



130 degrees.  The biological  porcine collagen sample presented in  Figure 4i  showed a predominant  orientation around 120

degrees, also indicated by the red arrow, with its angle distribution histogram in Figure 4l revealing variations between 100 and

140  degrees.  These  findings  confirm  the  robustness  and  reliability  of  our  models  in  accurately  predicting  collagen  fiber

orientations across different tissue types.

Figure  8:  3D visualization  and  orientation  analysis  of  fiber  structures  in  clinically  approved  bovine,  clinically  approved  porcine,  and

biological porcine tissues. a-c show 3D reconstructions of confocal microscopy slices, processed and visualized using Huygens, for clinically

approved  bovine  (a),  clinically  approved  porcine  (b),  and  biological  porcine  (c)  samples.  d-f  display  the  angular  distribution  of  fiber

orientations along the xy-axis (blue) and xz-axis (red), obtained through Fourier transform analysis in MATLAB. g-i provide the angular

distribution of fiber orientations obtained from Support Vector Regression. 

We extended our analysis to 3D collagen fiber orientation in porcine and bovine samples, leveraging advanced imaging and

modeling techniques. Figure 8 presents the comprehensive results of this analysis. Figures 8a through 8c show 3D visualizations

of  collagen  fiber  orientations  for  clinically  approved  bovine,  clinically  approved  porcine,  and  biological  porcine  samples,

respectively. Figures 8d through 8f display the polar distribution visualizations obtained using SVR, while Figures 8g through 8i

depict the results derived from FFT. For clinically approved bovine samples, the SVR results in Figure 8d indicate predominant

fiber orientations around 120 degrees along the xy-axis and 90 degrees along the xz-axis, whereas the FFT results in Figure 8g



show predominant orientations at 130 degrees along the xy-axis and 90 degrees along the xz-axis. In clinically approved porcine

samples, the SVR results in Figure 8e reveal predominant fiber orientations at 120 and 130 degrees along the xy-axis and 90

degrees along the xz-axis, while the FFT results in Figure 8h confirm a predominant orientation at 120 degrees along the xy-axis

and 90 degrees along the xz-axis.  For biological  porcine samples,  the SVR results in Figure 8f indicate predominant fiber

orientations at 120 and 110 degrees, with some variation around 120 degrees along the xy-axis, and a consistent orientation

around 90 degrees along the xz-axis. The FFT results in Figure 8i similarly show predominant fiber orientations at 130 degrees

along the xy-axis and 90 degrees along the xz-axis. These results demonstrate that our models effectively capture the complex

3D orientations of collagen fibers in porcine and bovine samples, showcasing their robustness and accuracy. This capability

enhances our understanding of the structural organization in biological tissues, with significant implications for developmental

biology and tissue engineering, where precise knowledge of fiber orientation is critical.

To further evaluate our approach, we applied it  to predict  the 3D collagen fiber orientation in early chick embryo heart

samples as a challenging use case. Figure 9 provides the comprehensive results of this analysis. Figure 9a presents a 3D vector

field visualization of collagen fibers in the chick embryo sample, with red arrows indicating the predicted orientations. Figure 9b

shows a confocal microscopy image that details the structural organization of the collagen fibers throughout the ventricle. The

polar distribution visualization in Figure 9c indicates a predominant fiber orientation around 90 degrees. Figure 9d offers a

volumetric rendering of the sample, highlighting the spatial distribution and organization of the collagen fibers. Additionally, a

3D  vector  field  visualization  in  Figure  9e  illustrates  regions  with  varied  fiber  orientations,  which  are  confirmed  by  the

corresponding confocal microscopy image in Figure 9f. The polar distribution visualization in Figure 9g reveals predominant

orientations around 45 and 90 degrees for the region shown in Figure 9e along the xy-axis, while the xz-axis consistently shows a

predominant orientation at  90 degrees.  These findings underscore our model’s  effectiveness in  capturing complex 3D fiber

orientations,  facilitating  a  deeper  understanding  of  structural  organization  in  biological  tissues.  This  work  has  significant

implications  for  developmental  biology  and  tissue  engineering,  particularly  in  advancing  our  knowledge  of  collagen  fiber

arrangement and its functional roles.

Figure 9:  Comprehensive analysis of 3D collagen fiber orientation in chick embryo heart samples using advanced imaging and modeling

techniques. The first row focuses on the right ventricle (RV), showing a 3D rendering of the heart (first column), a high-resolution 2D confocal

microscopy image of  collagen fibers  (second column),  a  3D vector  field visualization of  fiber  orientations (third column),  and a polar



distribution plot illustrating predominant fiber orientation around 90 degrees (fourth column). The second row provides similar analyses for

the left ventricle (LV), with corresponding visualizations and orientation data.

4. DISCUSSION

4.1 Synthetic Data Generation and Utilization
 Due to the inherent nature of biological data, which tend to have different fiber families concentrated at specific angles, model

training naturally introduced biases, prioritizing these angles  [46]. To address this issue, we generated synthetic data using a

diffusion model and subsequently trained our models with this data. The synthetic dataset provided a controlled environment to

ensure that the models were not biased towards a particular orientation. This was achieved by generating fibers at various angles.

It was crucial to provide the diffusion models with accurate descriptions to obtain the required images. Therefore, the detailed

description and quality of the dataset played a significant role in training robust models capable of generalizing to real-world

application.

4.2 Feature Extraction Approaches
Models trained with features extracted from images using HOG are significantly affected by the grid size  [47]. The grid size

determines the structure of the feature map by affecting the granularity and scale of the captured features. A finer grid size results

in more detailed feature extraction by capturing subtle variations in the image, which can be crucial for accurately modelling

complex  patterns  such  as  collagen  fiber  orientations.  Conversely,  a  coarser  grid  size  can  miss  these  details  but  reduces

computational complexity and noise. Therefore, choosing the appropriate grid size is crucial and needs to be tailored the images

being analyzed, with this study utilizing a grid size of 32x32. Moreover, the HOG parameters should be adapted to the specific

characteristics of the dataset, such as the image resolution and the scale of the analyzed structures. This adaptability contributes

to the overall effectiveness of the model by ensuring that the extracted features are both relevant and robust.



4.3 Comparative Model Performance
In this study, we employed both ML and DL techniques, including SVR, CNN, ResNet50, and attention-based DL models.

Among these approaches, SVR demonstrated the most effective performance, excelling in terms of accuracy and computational

efficiency.  Its  success  can  be  attributed  to  its  ability  to  handle  high-dimensional  feature  spaces  effectively while  avoiding

overfitting,  particularly  when applied  to  well-structured synthetic  datasets.  While DL models  such  as  CNN and ResNet50

achieved competitive results, they did not surpass the performance of SVR in this context. This highlights that simpler, more

interpretable machine learning techniques can sometimes outperform complex DL models for tasks where the feature space is

well understood and relatively structured, such as fiber orientation analysis.

The DL models  showed significant  potential  due to  their  advanced feature extraction capabilities  but  required extensive

tuning, larger datasets, and advanced techniques like data augmentation and transfer learning to realize their full potential. The

inclusion of attention mechanisms, for example,  enhanced their performance, demonstrating the importance of architectural

advancements in improving accuracy. However, the superior efficiency and robustness of SVR underline the critical need for

algorithm selection based on the nature of the data and the specific requirements of the task.

Additionally, a comparison with FFT, used as a benchmark method, revealed notable advantages of SVR. While FFT is a

reliable and well-established approach for  analyzing frequency and orientation, it  requires multiple preprocessing and post-

processing steps for accurate results. In contrast, SVR simplifies the workflow by eliminating the need for these additional steps

while achieving faster processing times. This efficiency, coupled with its strong performance, makes SVR a practical choice for

applications  involving  large  datasets  and  real-time  analysis.  These  findings  reinforce  the  importance  of  balancing  model

complexity, performance, and interpretability in the development of biomedical image analysis tools and other computational

methods.

4.4 Fiber Orientation across Porcine Tissues 
The ANOVA results indicated no statistically significant differences in the dominant fiber orientations among clinically approved

bovine, clinically approved porcine, and biological porcine tissues in FFT analyses. This finding suggests that these tissue types

share a similar primary fiber alignment. Given this similarity, clinically approved bovine and porcine tissues may be considered

interchangeable in  applications where  fiber orientation is  a  key structural  parameter.  Particularly in  tissue  engineering and

biomedical applications, this consistency supports the use of porcine pericardium as a scaffold or decellularized matrix, offering

a practical and scalable option. In cases where biological porcine tissue availability is limited, clinically approved alternatives

may provide viable substitutes.

Additionally, 3D FFT analyses helped reveal the broader architectural organization of these tissues, confirming that the primary

fiber  alignment  remains  unchanged  regardless  of  tissue  type.  This  structural  consistency  could  be  valuable  for  designing

engineered constructs that replicate the mechanical properties of native tissues. From a clinical perspective, understanding fiber

orientation is essential for optimizing surgical patch designs and improving tissue-engineered heart valves. The ML/DL-based

approach  presented  in  this  study  provides  a  more  refined  method  for  analyzing  fiber  alignment,  which  could  aid  in  the

development of personalized cardiovascular implants and regenerative therapies. Furthermore, high-resolution fiber mapping

may  enhance  computational  models  used  in  surgical  planning  and  disease  diagnostics,  particularly  in  conditions  affecting

collagen organization.



5. CONCLUSION

This  study compared the  effectiveness  of  traditional  FFT with advanced ML and DL models  for  analyzing collagen fiber

orientations in various tissue samples. The findings emphasized the strengths and limitations of each approach, demonstrating the

advantages of ML and DL models over the traditional FFT method in handling complex scenarios. While FFT remains effective

for basic 2D and 3D fiber orientation analyses, it encounters challenges in processing noise and structural variations present in

complex tissue architectures. Although FFT performed well in synthetic and biological datasets, its applicability diminishes as

tissue complexity increases due to its reliance on extensive preprocessing and assumptions about uniformity.

In contrast, ML and DL models, including SVR, CNN, ResNet50, and attention-enhanced architectures, exhibited superior

robustness and accuracy in analyzing intricate fiber patterns. These models excelled in their ability to learn from diverse datasets,

adapting to variations in tissue structures and reducing the impact of noise. Among them, SVR consistently provided precise and

interpretable  results,  highlighting  its  efficiency  in  characterizing  fiber  orientations.  DL  models  further  demonstrated  their

potential for deeper tissue analysis, especially with advanced techniques like transfer learning and attention mechanisms, which

improve performance in challenging cases.

In conclusion, while FFT serves as a reliable tool for basic analyses, ML and DL models significantly advance the field by

offering  improved  accuracy,  automation,  and  adaptability  to  complex  biological  structures.  These  methods  deepen  our

understanding  of  tissue  architecture  and  hold  promise  for  applications  in  biomedical  research,  tissue  engineering,  and

computational  modeling.  Future  efforts  should  focus  on  refining  these  models  further,  exploring  novel  architectures,  and

extending their use to other intricate biological systems.
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Data availability
The data underlying the results presented in this paper are available in the  GitHub repository. The dataset is structured into

training and testing datasets as follows:

Training Dataset

 Biological  Data:  15  different  sample  from 5th  different  patch  (Clinically  approved bovine  and  porcine,  biological

porcine) images.

 Synthetic Data:  8 high-quality synthetic images generated using diffusion models, further divided into 50×50 voxel

segments.

 Augmented Data: 5649 images

Testing Dataset

 Chick Embryo: Heart slice scans in 2D.

 Clinically Approved Bovine: Nine patches, with three having 3D slice scans.

 Clinically Approved Porcine: Seven patches, with four having 3D slice scans.

https://github.com/esaruhann/Learning-enhanced-3D-fiber-orientation-mapping-in-thick-cardiac-tissues/tree/Data_Manupilation/Dataset


 Biological Porcine: Seven patches, with one having 3D slice scans.

 Synthetic Data:  2 different synthetic data generated by diffusion models, 2 different data generated by MATLAB.

The data can be accessed via the link above.

Code Availability
The code used in this study is publicly available at the GitHub repository. This repository contains all necessary scripts, model

implementations, and dataset processing pipelines used for fiber orientation mapping.
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