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1. EXPERIMENTAL SETUP AND SAMPLE PREPARATION
In the reported experiments, we used a dual-beam optical trap formed by two counter-
propagating (C–P) light-sheet beams with linear polarization (wavelength 1064 nm, laser
light source ILM-10-1070-LP; IPG Photonics) overlapping inside a vertically oriented
glass capillary with square cross-section (inner dimensions 100 × 100 µm; Vitrocell)
that served as a sample chamber. Resulting quasi-planar colloidal OSS arrays that
self-assembled in the trapping region were observed by an optical microscope formed
by a long-distance objective (M Plan Apo SL 80X; Mitutoyo), tube lens (focal length
200 mm), and a CMOS camera (acA2000-50gc; Basler) from a direction perpendicular
to the plane of the light sheet, see Fig S1a. The trapping beams were transformed
using Thorlabs achromatic doublets with anti-reflection coating (ACN254-XXX-C; L1
– L6), dielectric mirrors (PF10-03; M1 – M3), and aspheric lenses with anti-reflection
coating (C240TME-C; AS1), see Fig S1b. A collimated Gaussian beam from the laser
was first expanded 2× by a telescope formed by lenses L1 ( f1 = 150 mm) and L2 ( f2 =
300 mm) and subsequently projected on a spatial light modulator (SLM, LCOS X10468-
07; Hamamatsu) that served for dynamic shaping of the transverse intensity profiles of
the trapping beams. In particular, we created light-sheet beams with transverse beam-
waist radii of w0,x = 10.5 µm and w0,y = 1.6 µm (values at the trapping location inside
the sample chamber) by adjusting the profile of the phase diffraction grating imposed
upon the SLM. The phase mask encoded at the SLM diffracted the incident beam into
the ±1st diffraction orders that were used to generate the two C–P trapping beams;
the zeroth and higher orders were then blocked by a stop placed in the focal plane of
lens L3 ( f3 = 400 mm). The two transmitted ±1st – order beams were reflected from
prisms P1 and collimated by lenses L4 ( f4 = 200 mm). These lenses formed telescopes
with the lens L3, projecting the SLM plane on the mirrors M2. Telescopes consisting of
lenses L5 ( f5 = 100 mm) and L6 ( f6 = 150 mm) then imaged the SLM plane onto the
back focal planes of aspheric lenses AS1 ( f = 8 mm, maximal NA = 0.5) that focused
the two C–P light-sheet beams into the sample chamber. The focal planes of the two
beams created in the trapping region by aspheric lenses AS1 were slightly displaced
from each other along the beam propagation direction z (by approximately 5 µm) to
increase the axial trapping stability [1]. In order to control the relative orientation of the
linear polarization of the two trapping beams (parallel vs. perpendicular), a half-wave
plate was placed before the back-focal plane of the right aspheric lens AS1.

Polystyrene microspheres with diameters ranging between 60 – 995 nm were dis-
persed in distilled water and sonicated for several minutes in an ultrasonic bath to
disintegrate potential particle clusters. Subsequently, diluted colloidal suspensions were
loaded into the capillary sample chamber using a syringe connected to the capillary
via flexible tubing. The experiments were started once the pressures at the open end of
the capillary and at the sample inlet equilibrated. During the experiments, the syringe
remained connected to the sample chamber to eliminate gravity-induced flow along the
axis of the capillary (x-direction).
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Fig. S1. a) Dual-beam optical trap formed by two linearly polarized, counter-
propagating light-sheet laser beams (LB and RB) with orthogonal or parallel polariza-
tion controlled by a half-wave plate (HW). Optically trapped and bound particles that
form an OSS array located in the plane of the light sheet (the xz-plane) are observed
using a microscope oriented along the y-axis. b) Experimental setup for the creation
and characterization of 2D arrays of interacting OSSs (see the main text for details).
AS1: aspheric trapping lenses; CAM: camera; L1 – L6: lenses; M1 – M3: mirrors; O:
microscope objective; P1: prisms; SLM: spatial light modulator; TL: tube lens.

2. 3D STOCHASTIC SIMULATIONS OF FORMATION OF OSS ARRAYS
To simulate the three-dimensional (3D) stochastic motion of N optically confined and
bound particles forming an OSS array in a viscous fluid, we used Monte-Carlo nu-
merical integration of the overdamped Langevin equation. Using a column vector
R that combines all 3N coordinates of the particles forming the structure as R =
{x1, y1, z1, · · · , xN , yN , zN}T, the Langevin equation of motion can be written as

Γ · Ṙ = Fopt(R) + f(R, t). (S1)

In (S1), Fopt(R) is the deterministic optical force and f(R, t) is the stochastic thermal
force acting on the system of N optically trapped and bound particles. Both forces
are represented by column vectors with 3N components that combine the Cartesian
force components of all N particles. The 3N × 3N grand-resistance matrix Γ then
accounts for the hydrodynamic interaction between the particles that are assumed to be
spherical [2, 3]. The stochastic force f(R, t) is characterized by zero mean and variance
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given by ⟨f(R, t) ⊗ f(R, t′)⟩ = 2kBT Γδ(t − t′), where ⊗ denotes the outer (dyadic)
product and ⟨⟩ represents ensemble averaging. In the numerical implementation, the
inverse of the grand-resistance matrix —- the grand-mobility matrix M = (Γ)−1 – was
used to update the particle positions in a single time step. To calculate (Γ)−1, the
third-order approximation of Rotne–Prager–Yamakawa was used, with extra three-
particle-interaction refinement for the same-sphere terms [2, 3]. The only deterministic
contribution to Eq. (S1) is the optical force Fopt(R) evaluated from the Minkowski form
of the Maxwell stress tensor [4]. The latter was constructed from the Mie scattering
theory for multiple spheres [5] used to solve the electromagnetic interaction of the
incident beams and the particles. The localized approximation for a paraxial Gaussian
beam [6] was used to model the dual-beam optical trap.

For the integration of Eq. (S1), a simple first-order method was used, with the fixed
time step carefully tuned to limit the particle displacements to a fraction of a wavelength
in every iteration. For each particular N, the starting positions of all particles were set
to the equilibrium positions of the shorter (N − 1)–chain, with the extra particle added
at one end. For lower values of N < 10, turning off the stochastic force term f helped to
accelerate the initial relaxation of the structure along the z-axis. For this initial part of
the simulation, we utilized the MATLAB implementation of a variable-order method
for stiff systems ode15s. Subsequently, f was switched on, and the full 3D stochastic
motion of all spheres was simulated. In this simulation phase, the spheres were released
from a local stable configuration that was further relaxed or switched into a different
stable configuration, thus revealing more realistic correlated dynamics.

The trajectories of individual particles obtained from the stochastic simulations de-
scribed above were analyzed to determine the effective stiffness of particle confinement
in the OSS structure. In the considered quasi-planar trapping geometry based on C-P
light-sheet beams (see Fig S1a), the out-of-plane motion of the particles along the y
axis is strongly restricted. Therefore, it is sufficient to carry out the stiffness analysis
in the xz-plane of the light sheet where the spatial confinement due to optical forces
is the weakest. The 2D optical potential created in the xz-plane in the vicinity of the
primary OSS chain is approximately harmonic for small displacements of optically
trapped and bound particles from their equilibrium configuration. Consequently, it can
be characterized by the principal stiffness values along the x and z axes. Because the
trap stiffness κx along the lateral direction x quantitatively characterizes the strength
of interaction between the parallel chains in the OSS structure, we chose κx evaluated
at the tentative stable positions in the 2D optical potential landscape as the primary
indicator of the stability of forming 2D OSS arrays.

3. EFFECT OF PARTICLE SIZE ON THE FORMATION AND SPATIAL
CONFIGURATION OF 2D OSS ARRAYS

The formation of 2D OSS arrays is a nonlinear process mediated by optical binding
forces that are associated with multiple light scattering from the constituent particles.
For particles with dimensions comparable to the wavelength of the incident light, the
intensity and spatial distribution of the scattered light depend on the particle size in
a non-monotonic fashion [7]. Consequently, the landscapes of optical binding forces
created in the interference pattern between the incident and scattered light can greatly
vary when the particle size changes, particularly in the vicinity of the resonant scattering
conditions [8].

To illustrate the strong dependence of the configuration of newly formed 2D OSS
arrays on the size of the constituent particles, we simulated the formation of 2D OSS
arrays from monodisperse particles whose diameters differ by only 50 nm, keeping the
other relevant system parameters (refractive indices of the particles and the ambient
medium, spatial profile and intensity of the incident light-sheet beams) constant. For
each particle diameter considered (607, 657 and 707 nm), we first determined the stable
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Fig. S2. Simulations of the formation of 2D OSS arrays from monodisperse particles
of different diameters d indicated in individual figure panels. The grayscale back-
grounds visualize the simulated spatial profiles of the net optical intensity around
the primary on–axis OSSs (empty circles), colored circles indicate possible secondary
off-axis trapping locations whose normalized lateral stiffness κx/κmax (left column)
and axial stiffness κz/κmax (right column) are color-encoded (κmax: max {κx, κz}
for all considered values of d). Fixed simulation parameters: particle refractive in-
dex 1.59, ambient refractive index 1.33, beam waist radii of the light-sheet beams
w0,x = 10.5 µm and w0,y = 1.6 µm.

equilibrium configuration of the primary on-axis OSS chain comprising 6 particles.
Subsequently, we moved a single probe particle of the same size along a regular 2D grid
surrounding the primary OSS and determined the value of Fopt(x, z) exerted on the
probe particle at the given location [x, z]. Finally, we calculated the values of the trap
stiffness κx, κz that quantitatively characterize the components of Fopt(x, z) along the
x and z axes in the vicinity of the tentative stable positions in the 2D optical potential
landscape (see Section 2 for details).

Figure S2 summarizes the results of these simulations. The grayscale backgrounds in
individual panels visualize the spatial profiles of the intensity of the net optical field
formed in the vicinity of the primary OSS chains (empty circles). The colored circles
then mark possible off-axis trapping locations created in the net optical field around the
primary OSS, with the color encoding the magnitude of the normalized lateral trap stiff-
ness κx/κmax and axial trap stiffness κz/κmax (red color: maximal normalized stiffness,
blue color: minimal normalized stiffness, κmax: max {κx, κz} for all considered particle
sizes). The stability of confinement in these secondary optical traps is determined by
the modulation depth of the off-axis optical intensity. In general, off-axis traps with
higher values of κx, κz are more likely to function as stable nucleation sites for secondary
OSS chains. The comparison of the results obtained for different particle sizes clearly
indicates that the configuration of the primary OSS chain and the locations and stability
of the possible nucleation sites for the secondary chains vary largely with the particle
size. Similar changes of OSS configuration can then be induced by varying the refractive
indices of the particle / ambient medium or the intensity profiles of light-sheet beams.

It is worth noting that the variations in the overall configuration of 2D OSS arrays
observed with changing particle size result from the complex force interactions in the
physical system “particles + interference light field”; they are not artifacts introduced
by numerical errors or approximations adopted in the simulation procedure.
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4. CHARACTERIZATION OF OPTICAL FORCES WITHIN OSS ARRAYS
USING EXPERIMENTALLY RECORDED TRAJECTORIES

As stated in Section 2, a collection of N colloidal particles optically trapped and bound
in a viscous liquid represents an overdamped dynamical system the trajectory of which
evolves according to the 3N-dimensional Langevin equation of motion (S1) with coupled
degrees of freedom R = {x1, y1, z1, · · · , xN , yN , zN}T. The actual experimental trajectory
R(t) of the system, together with (S1), can in turn be used to infer the spatial profile
Fopt(R) = {Fopt

x,1 (R); Fopt
y,1 (R); Fopt

z,1 (R); · · · , Fopt
x,N(R); Fopt

y,N(R); Fopt
z,N(R)} of the net optical

force field acting on the system.
As discussed in [9], Bayesian inference is a powerful approach for the quantitative

characterization of optical force fields that uses a maximal-likelihood approach for
extracting the parameters of interest solely from the discrete trajectories of the system
of optically trapped and bound particles recorded in the presence of detection noise.
Briefly, the desired characteristics of the optical force field are identified as the values that
maximize the conditional probability distributions of the actual recorded trajectories,
parametrized using the appropriate form of the Langevin equation of motion (S1) for
the particular studied system. In this sense, the particle trajectories serve as probes of
the local force field, as stated in the main article.
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