Confocal ellipsoidal displaced
Gregorian structure for stand-off
millimeter-wave imaging:
supplemental document

To gain a better understanding of how to align different coordinates of the proposed geometry, a
more detailed trigonometric analysis is presented. These mathematical observations assist the
readers in constructing the proposed configuration and obtaining more precise ray tracing results.

1. REVISITING DEFINITIONS FOR THE MODIFIED SM CURVE

A more general geometry for the SM curve of Fig. 2 with some additional details is depicted in
Fig. S1 where some of the basic geometrical definitions of the constructive curves of the SM are
marked on the complete curves of the two displaced and tilted ellipses.
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Fig. S1. General geometrical definitions of the two displaced and tilted ellipses constructing
the SM curve.

For the sake of simplicity, only some of the geometrical definitions and notations are shown in
Fig. S1. First, the lower ellipse is selected as an example. Similar definitions can also be applied to
the upper ellipse. Based on the basic trigonometry principles [1], the lower ellipse can be defined
as the locus of points in the Euclidean plane regarding the fixed points F, and F3 where:
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This statement claims that the ellipse E is the set of points P in the R? space such that the sum of
the distances | PF,| and |PF3| is equal to 2a, where a is defined as the semi-major axis of the ellipse.
This argument also dictates that F, and F3 are two foci of the ellipse E and the diverging bundle of
rays originating from one of them, after reflection, converges at the other one. Other definitions
of a standard ellipse, such as linear eccentricity, semi-latus rectum, etc., are also applicable in the
geometry of Fig. S1.

If in step (2) of Fig. 2 of the paper, the x-coordinates of the points V; and V, are selected equal
to the x-coordinates of the first foci or a — ¢, then the distance from the apex of the SM to its first
foci which is coincidental with the focus of the MM is:
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where this distance, by definition, is also equal to the semi-latus rectum length or the radius of
curvature at the vertices in a standard ellipse. By using the Pythagorean theorem, the distance
from the apex of the SM to its second foci which is coincidental with the phase center of the source
or detector is:
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Other geometrical coordinates can also be calculated similarly by using simple trigonometric
laws and identities. Therefore, the coordinates of the proposed SM geometry can be easily
extracted by only identifying the basic parameters of the standard ellipse.

2. THE SM CURVE IN CARTESIAN AND POLAR COORDINATES

From an analytical geometry point of view, the constructed SM curve can be described in both
the Cartesian and polar coordinate systems. For the Cartesian description, the standard ellipse of
the step (1) of Fig. 2 of the paper can be described in the xy-plane in its general form as:
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which is the canonical equation of a standard ellipse in the Euclidean space. By applying an affine
transformation of the coordinates (x,y) as [2]:
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x = (X —xg)cosf+ (Y —yp)sinf
y=—(X—xp)sinf+ (Y —yp) cos®

By simplifying these equations using algebraic identities and categorizing the results using
matrix notation, we obtain:
E(X,Y) =V MpV (S6)

where V is the projective coordinates which is defined as:

X
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1

and the Mg matrix is calculated as:

A B/2 D/2
Mg=|B/2 C E/2 (S8)
D/2 E/2 F

The coefficients A-F for the proposed geometry of the paper can be calculated as:

A = (a sinfcepg)? + (b cosfcepc)?
B = 2(b? — a?) sin cepg cos OcEpG
C = (a cosfcepc)* + (b sinfcepe)*
D = —2Ax; — By,

E = —Bx; —2Cy,

F = Ax% + BCxcy. + Cy? — (ab)?

(89)

where (xc, ) is the center coordinates of the ellipse. It should be noted that Eq. S6 is the abstract
and implicit definition form of a generalized non-degenerate ellipse as a quadratic polynomial
set of points (X, Y) on the Cartesian plane provided that:



B2 —4AC <0 (510)

In its general form, the curve E(X, Y) is a non-degenerate conic section if:

det[Mq] # 0 (S11)
where the determinant of matrix Mg is invariant with respect to both translation and rotation.
Furthermore, E(X,Y) is an ellipse if and only if:
det[Azz] >0 (512)
where Aj; is a submatrix of order two which is obtained by removing the third row and column
of the matrix Mg. Moreover, E(X, Y) is a real ellipse if:
(A+C)det[Mp] <0 (513)

but an imaginary ellipse if:

(A + C)det[Mg] > 0 (S14)

To find the center coordinates, we refer to the basic definition of a central point in an elliptical
curve. First, we point out that there exists a center point for the ellipse if:

det[Ap] #0 (515)

Next, we notice that, by definition, any chords of the ellipse pass through it bisect at its central
point. In order to calculate this point, [3] suggests to calculate:

JE(X,Y) 9E(X,Y)
X oY
which states that the gradient of the quadratic form of the ellipse E(X, Y) vanishes at the center.

For the final SM geometry which is illustrated in step (3) of Fig. 2 of the paper, the center point
coordinates can be calculated as:

(xc,ye) = VE(X,Y) = [ (S16)

{ Xe =a—c+dscos? Ocepg (517)
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where d . is the distance between the foci and the center point of the ellipse which is defined as:
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Furthermore, Eq. S6 in the new center coordinates can be written using matrix notation in the
form of:

A B X — X¢
(x—xc y—yc) =K (519)
C D Y—Yec
where constant « is defined as:
det[MQ]
K== def[Azz] (820)

In this new form, a non-degenerate ellipse corresponds to the condition x # 0 and AC > (B/2)2.
The ellipse is real if the sign of x be equals to the sign of (A + C). Finally, for the polar coordinates,
the SM curve of Fig. S1 can be described parametrically as:

5 _  a(1-é?)
F3P1 - 17€COS(90791> (821)
D — a(1—¢?)

171 = T¥ecos(62)

where angles 6, 01 and 6, are defined in Fig. S1.



3. CANONICAL EQUATION OF THE SM CURVE IN THE NEW COORDINATES

To obtain a standard canonical equation for the new displaced and tilted ellipse, first, the ellipse
translation is quantified by the vector:
o Xc
t= (522)
Ye

as is depicted in Fig. S2.

Fig. S2. Defining the displaced and tilted ellipse in the new x'y’-coordinates by applying
proper translation and rotation on the ellipse.

For applying the rotation by angle «, it is useful to first diagonalize the submatrix Ayy. The
descriptive equation of the new ellipse in the x'y’-coordinate system can be written as [3]:

det [MQ]
det[Az)]
where A; and A; are two non-zero eigenvalues of Aj; submatrix. In the case of a real ellipse, A1

and A, have the same algebraic sign [4]. By dividing this equation by «, defined in Eq. 520, the
standard canonical form of an ellipse is obtained as Eq. S4.
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