
PROGRAMMABLE KERR COMBS IN LASER CAVITY SOLITON MODE-LOCKED 

LASER: SUPPLEMENTARY 

Section S1- Simulation parameters and normalization 

 

The programmable nested cavities MLL can be simulated based on the following coupled mode 

equations: 
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  (𝑆1) 

 

The spatial dimension 𝜙 is normalized relative to the second order chromatic dispersion of the 

auxiliary cavity. 𝜙0 denotes the normalized spatial period. Thus, the amplitude of the electric 

field was expressed through the Kerr coefficient of the auxiliary cavity by: 
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E is the electric field ([V/m]), 𝛾𝑎  represents the Kerr coefficient ([/W/m]), 𝜀0  the vaccum 

permittivity ([F/m]), 𝑛0  the fiber effective refractive index and 𝐴𝑒𝑓𝑓  the fiber cross section 

([/m²]). 𝑣𝑔 is the group velocity ([m/s]), 𝜅𝑏 the damping rate of the main cavity ([/s]) related to 

the loss 𝛼𝑏 (Neper) of the main cavity by 𝜅𝑏 = 𝛼𝑏 𝑇𝑏⁄   (𝑇𝑏  is the main cavity round trip [s], 𝐿𝑏 

the related longitudinal dimension of the cavity [m].). It is to notice that as the resonator 

considered is a fibered SMF28 Fabry-Pérot resonator, no distinction has been made on the 

effective cross section used to normalize the main field (ψb) and the auxiliary one (ψa). 
 

The spatial dimension 𝑥 is related to 𝜙 by: 
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With 𝑇𝑎 the round-trip time of the auxiliary cavity and 𝐷2,𝑎 the second order chromatic given 

by: 
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 𝛽1 = 1 𝑣𝑔⁄  ([s/m]) and 𝛽2𝑎 having the dimension [s²/m]. In general, the chromatic dispersion 

of nth order (𝐷𝑛,𝑎) is given by (𝑛 ≥ 2):  
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and for consistence with the definition of 𝜙, rewritten on (S1) by: 
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The same normalization has been carried out for the main cavity by simply changing the 𝛽𝑛,𝑎  

sequence with the chromatic dispersion coefficients of the main cavity 𝛽𝑛,𝑏, and providing the 

𝑑𝑛,𝑏 present in (S1). The detuning between both cavities Free Spectral Range (FSR) is carried 

by 𝜁𝑏 , which is related to the differential delay Δ𝜏 by: 
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With 𝛿𝛽1 = Δ𝜏 𝐿𝑏⁄  [s/m] and Δ𝜏 = (𝐹𝑆𝑅𝑎 − 𝐹𝑆𝑅𝑏) 𝐹𝑆𝑅𝑎²⁄  . 

 

The time dimension (𝑡) provides the scale of the dynamic. We chose to normalize the time 

dimension relative to the damping ratio of the main cavity (𝜅𝑏), as indicated by the loss unity 

for the main cavity in (S1). The coefficient 2 𝜅𝑏𝑇𝑏⁄  is present to retrieve the field 𝜓𝑏  due to the 

transmission through the auxiliary cavity of the electric field circulating in the main cavity, as 

proposed in [1]. 

The relative resonant frequencies of the auxiliary and main cavity need also to be considered 

for the soliton laser to be established. To do this, we consider a mode of reference in the 

auxiliary cavity 𝜈0,𝑎. The closest resonance of the main cavity, can then be described relatively 

to 𝜈0,𝑎 by: 

 
𝜐0,𝑏 − 𝜐0,𝑎 = −𝐹𝑆𝑅𝑏.Δ (𝑆8) 

 

so that Δ represents the detuning of the main cavity resonances relative to its free spectral range. 

The carrier phase shift due to this resonance detuning is taken in consideration by the 𝛿0 

coefficient: 

 

𝛿0 = 2𝜋. Δ.
2
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 (𝑆9) 

 

The main cavity also includes an Erbium Doped Fiber Amplifier (EDFA), an optical filter and 

the Programmable Delay-Line (PDL). The gaussian filter being much narrower than the EDFA 

bandwidth, the EDFA was modelled by a flat gain, homogeneously saturable amplifier medium. 

The small signal gain was normalized relatively to the damping rate of the main cavity: 
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with 𝐺0,𝐸𝐷𝐹𝐴 expressed in Neper. Similarly, the gaussian filter coefficient 𝜎𝑏 arises from the 

spatial and temporal normalization. As a result, we obtain: 
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With Γ𝑏 the filter 𝑒−1 bandwidth in [/s]. The last component of the main cavity is the PDL. 

Only the two first orders of the chromatic dispersion (𝛽0,𝑃𝐷𝐿 ,  𝛽1,𝑃𝐷𝐿) were taken into account, 

mainly due to the short lengths of the PDL delay-line regarding the pulse width obtained at 

steady-state, making higher orders negligible. Following the same normalization as before, we 

obtain for the nth delay-line: 
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The set {𝑑0,𝑃𝐷𝐿
𝑛 , 𝑑1,𝑃𝐷𝐿

𝑛 }
1≤𝑛≤8

 of the 8 delay-lines are then injected into the sequence of transfer 

functions (2), operation included on (S1) by the impulse response ℎ𝑃𝐷𝐿(𝜙).  

 

Finally, the two cavities are coupled together by the coefficient {𝑘𝑎→𝑏 , 𝑘𝑏→𝑎}, due to 

the external coupling of the auxiliary cavity. If we define 𝜃 as the loss of the high Q auxiliary 

cavity, induced by the external coupling, then 𝜃𝑒𝑥𝑡 = 𝜋Γ𝑎𝑢𝑥𝑇𝑏 (Γ𝑎𝑢𝑥 being the Full Width at 

Half Maximum of the auxiliary cavity resonances), and: 
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Table (S1) summarizes all physical parameters of the MLL simulated and relates physical unit 

to their normalized counterparts. Three parameters were varied to carry simulations:  
𝐺0,𝐸𝐷𝐹𝐴, 𝑃𝑏,𝑠𝑎𝑡  and Δ. Experimentally, both 𝐺0,𝐸𝐷𝐹𝐴 and 𝑃𝑏,𝑠𝑎𝑡  can be changed independently 

by adjusting the pumping current of the EDFA and the optical loss of the main cavity. The 

resonance detuning Δ need to be varied typically with a fiber stretcher in the main cavity, or by 

a thermal adjustment of the auxiliary cavity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Section S2- Simulation conditions 

 

Simulations were carried on based on an initial white noise (uniform power spectral density 

with random phase) and simulation performed until a steady-state is reached. To complete the 

proposed model, supermodes competition could also be considered by replacing the single 

equation of the main cavity field (𝜓𝑏) by a set of cavity fields (𝜓𝑏,𝑞) associated with all main 

cavity’s resonances (𝜐0,𝑏
𝑞

) included inside the auxiliary cavity main mode FMHW. Thus, 

equation (S7) becomes:  

 

𝜐0,𝑏
𝑞 − 𝜐0,𝑎 = −𝐹𝑆𝑅𝑏.Δ

𝑞 < Γ𝑎𝑢𝑥  (𝑆14)  

 

In our case, the simulation conditions present a 𝐹𝑆𝑅𝑏  twice larger than the FWHM of the 

auxiliary cavity, so that the supermode competition has been neglected.  

 

 

 

       Table S1. Cavities parameters used for simulation 

Main cavity Value unit Norm  value 

𝐿𝑏 20.88 m   
𝑇𝑏 102.4 ns   

𝐹𝑆𝑅𝑏 9.765 MHz   
𝛼𝑏 3 dB 𝜅𝑏 7.77 106 

𝛽2,𝑏 -5.25 ps²/km 𝑑2,𝑏 0.12 

𝛽3,𝑏 0.152 ps3/km 𝑑3,𝑏 -1.1 10-3 

𝛿𝛽1 (delay detuning) 0 ps/m 𝜁𝑏 0 

(𝜐0,𝑏 − 𝜐0,𝑎) 𝐹𝑆𝑅𝑏⁄  

(resonance detuning) 

0.4 ≤ Δ ≤ 0.55  𝛿0 6.31 ≤ 𝛿0 ≤ 8.68 

𝐺0,𝐸𝐷𝐹𝐴 14 ≤ 𝐺0,𝐸𝐷𝐹𝐴 ≤ 20 dB 𝑔0,𝐸𝐷𝐹𝐴 4 ≤ 𝑔0,𝐸𝐷𝐹𝐴 ≤ 5.78 
𝑃𝑏,𝑠𝑎𝑡 14 ≤ 𝑃𝑏,𝑠𝑎𝑡 ≤ 18 dBm |𝜓𝑏,𝑠𝑎𝑡|

2
 0.16 ≤ |𝜓𝑏,𝑠𝑎𝑡|

2
≤ 0.4 

𝜆𝑐,𝑓𝑖𝑙𝑡𝑒𝑟 1560 nm   

Δ𝜆𝑓𝑖𝑙𝑡𝑒𝑟 5 nm 𝜎𝑏 0.17 

Auxiliary cavity Value unit Norm value 

𝐿𝑎 0.2088 m   
𝑇𝑎 1024 ps   

𝐹𝑆𝑅𝑎 0.9765 GHz   
𝛽2,𝑎 -21.96 ps²/km 𝑑2,𝑎 0.5 

𝛽3,𝑎 0.152 ps3/km 𝑑3,𝑎 -1.1 10-3 

𝛾𝑎 1.23 /W/km   
𝛼𝑎 0.07 dB 𝜅𝑎 3.14 107 

Γ𝑎𝑢𝑥  
(external coupling) 

5 MHz 𝑘𝑎→𝑏 
𝑘𝑏→𝑎 

3.18 

𝜂 (coupling ratio) 0.4    



 

Section S3 - Fourier transform for a pure delay interleaving operation 
 

Equation (3) is the Fourier transform for a pure delay interleaving operation, ideally obtained 

by the PDL without carrier phase step. The transfer function is obtained based on the 

assumption that the set of voltage applied on the PDL leads to a direct division of the repetition 

pulse train by 2𝑙 , l being an integer. As described in the article, this condition is not mandatory 

to obtain a harmonic oscillation of the MLL, but allows a simple sequence between the delays 

used to multiply the repetition rate. Thus, assuming a pulse interleaving of pure delay (i.e. 

without loss), with a minimal delay 𝜏 = 𝑇𝑟𝑒𝑝 2𝑙⁄ , the PDL impulse response is given by: 
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leading to the Fourier transform: 
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