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Abstract: This paper reports on a study of design 
methodology for smartphone lenses utilizing generative and 
rule-based artificial intelligence (AI) algorithms. The 
proposed innovative design method utilize the GPT-4, an 
OpenAI model to generate macros for global optimization 
algorithms used in designing smartphone lenses.  A 
comprehensive global search for optimal starting points of 
smartphone lenses has been conducted to obtain training 
sets. We trained GPT-4 model developing framework for 
coding of macros, creation of merit function and evaluation of 
obtained starting designs. The results demonstrate the 
practical value of the proposed design methodology 
based on AI algorithms in the design of a 21.4 megapixel 
smartphone lens.  

1. INTRODUCTION 

We are witnessing and living in an era where machine 
intelligence is beginning to influence most domains of science and 
engineering. 

In 1956, John McCarthy introduced the term AI to describe 
machines like the “Logic Theorist” that could reason. According to 
Wang [1], AI refers to information processing systems that adapt 
to their environment using available resources and knowledge.  
Currently, the intelligence quotient (IQ) of artificial intelligence 
ranges from 100 to 120, which indicates that it is already more 
capable and efficient than most of the average humans in solving 
and performing specific tasks. Predictions suggest that very likely, 
AI could soon achieve an IQ in the range of several thousand.  

The remarkable capabilities of this new form of intelligence in 
our world have already provoked significant skepticism and fear 
across various professional domains. One group, including 
designers, programmers, and engineers, seeks to embrace and 
synergize their expertise with these advanced algorithms. 
Meanwhile, others view these developments with skepticism and 
warn of the potential consequences AI may have on the formation 
of future civilization and economy. 

 
 
Fig. 1. Increasing trend of research topics on the application of 

artificial intelligence in the field of optical engineering. 
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The authors of this study believe that the synergy between 
human effort and artificial intelligence, through their 
complementary contributions, represents a very effective 
approach for achieving reliable and high-quality results in optical 
design. Traditional optical design relies heavily on iterative 
methods led by experienced designers, often demanding extensive 
computational resources and domain-specific expertise.  

In the last decade, we have witnessed significant advancements 
in the application of AI in optics and photonics, evolving from 
conceptual research to practical implementation. Three key stages 
can be observed throughout this period. The first stage marks the 
early research and integration, where researchers began 
implementing artificial intelligence into optical networks, offering 
more efficient solutions. From 2018 to 2022, there was a rapid 
surge in various fields of photonics, driven by machine and deep 
learning solutions [2, 3]. Fig. 1 shows statistics based on papers 
published in Applied Optics and Optics Express with the keywords: 
artificial intelligence, machine learning, and deep learning. Since 
2022, the impact of AI on optics and photonics has become even 
more pronounced, leading to major technological innovations. 

In 2024, John Hopfield and Geoffrey Hinton were awarded the 
Nobel Prize in Physics for their pioneering work on artificial neural 
networks. In the same year, the XLuminA software was introduced 
in super-resolution microscopy, accelerating innovations based on 
AI in the field of optics [4 ]. 

This study investigates an innovative approach to smartphone 
lens design, leveraging generative AI to produce macros of global 
search algorithm, and merit function and evaluate starting design.  
Generative AI models, such as ChatGPT, have demonstrated an 
amazing ability to generate scripts and code that guide 
optimization algorithms toward effective solutions. ChatGPT is 
based on the neural network using billions of parameters [5].  
 In scenarios requiring a blend of creativity, visualization, logical 
reasoning, and responsiveness to real-time needs, AI-driven design 
solutions remain at the threshold of efficiency and clarity. To 
illustrate the experience of designers in the sneaker industry 
utilizing AI-based application “Imagine an army of little aliens 
attempting to draw shoes. They might be fantastic at it, but 
they lack the earthly wisdom of what a shoe truly entails. AI-
based applications, like ChatGPT and Midjourney, are still in 
their infancy and don’t quite grasp the intricate details of 
shoe construction [6].”  
Despite the well-known challenges of generative AI, such as errors 
or hallucinations, an expert from shoe industry expressed 
optimism, describing AI as rocket fuel for creativity. They 
emphasized that AI is not a replacement for human creativity but 
an amplifier, calling it “an amazing tool guided by human 
imagination [7].” 
Our experience in training OpenAI model has shown that optical 
designers can rely on the code and formulas generated by the AI 
large language model (LLM) with a high degree of accuracy.  
Currently, deep learning methods can directly generate initial 
configurations, including approaches based on supervised learning 
[8, 9], unsupervised learning [10], and end-to-end models [11]. 
Although current applications are generally limited to single 
structures, introducing dynamic networks holds substantial 
potential for solving a broader range of optical configurations.  
Dilworth, by incorporating an artificial intelligence (AI) feature into 
his optical lens design software, SYNOPSYS OSD, demonstrated 
remarkable foresight in recognizing the potential of machine 

intelligence nearly 40 years ago. The rule-based AI algorithms 
within the software could perform complex tasks related to the 
evaluation and optimization of optical systems, relying on only a 
few textual commands [12].  
The application of AI into optical design has been explored in 
previous works [13], where rule-based AI [14], and deep-learning 
models support the generation of starting designs.  
Recently, Yang et al.  developed a framework based on deep 
learning that uses a step-by-step approach to create lens designs 
from scratch, eliminating the need for a starting design. This 
method can automatically design both standard and advanced 
lenses, such as those used in cellphones, making them compact 
and highly efficient [15].  
The novelty of our study lies in its application of generative AI as 
an active contributor to the design process through the creation of 
macros and evaluation of starting designs, enabling the 
automation of global search optimization. Additionally, this 
generative approach adds value by reducing the time required to 
generate merit function macros with optimized aspheric surfaces 
for smartphone lenses. By focusing on a rule-based AI algorithms 
for automatic aspherical assignment and automatic glass 
replacement, the proposed design approach achieves a higher 
level of automated lens design.  
In that sense, the conducted study lays the foundation for future 
advancements in AI applications, ultimately pushing the 
boundaries of what is achievable in future of lens design. 
The remainder of this paper is structured as follows. Section 2 
explains the training of the GPT-4 model for writing macros, as 
well as the search for the best methodology for generating the 
initial design of smartphone lens. Section 3 addresses the 
optimization process of the initial design using rule-based AI 
algorithms for adding aspheric surfaces and additional refractive 
elements. Section 4 concludes with a discussion of the proposed 
methodologies and the advantages brought by the application of AI 
in optical design.  

2. SUPERVISED TRAINING OF GENERATIVE AI ON 
DESIGN SEARCH 

The evolution of smartphone optics is driven by the increasing 
demand for advanced mobile photography, with users seeking 
professional-quality imaging in compact devices.  

Fig. 2.  Starting designs of smartphone lens for (a) 16 megapixels camera, 
generated with weak weights of distortion control  (b) 16 megapixels 

camera, generated with strong weights of distortion constraints (c)  21.4 



megapixel camera, generated with illumination control in 5 field points  (d) 
21.4 megapixel camera, generated with illumination control in three field 

points . 
 
High-resolution sensors, paired with advancements in 
computational imaging, have become a cornerstone of the most 
widely accepted smartphones [16]. Emerging trends, including the 
integration of aspheric lenses, free-form lenses, and hybrid 
materials like glass-polymers, are further transforming 
smartphone optics, offering new opportunities to push the 
boundaries of mobile imaging [17,18].  Since the invention of CCD 
(Charge-Coupled Device) technology, digital photography has been 
revolutionizing the world, ushering in an era where images are 
increasingly replacing words [19]. Integrating CCD sensors into 
smartphones is challenging due to their higher power 
consumption and larger size, which is why CMOS sensors are more 
commonly used. 

To define the image specifications, we selected the Omnivision® 
OV21840 CMOS image sensor, which features an active array of 
5344 x 4016 pixels, providing a resolution of 21.4 megapixels. 

The diagonal of the sensor is 7.90 mm with pixel size of 1.12 
micrometers. The image height is defined as half of the sensor's 
diagonal, yielding ≈ 3.953mm. To mitigate the risk of image 
vignetting and ensure optimal image quality on the sensor array, 
the image height is set to 3.99 mm, slightly exceeding the required 
value. Optical characteristics of smartphone lens are presented in 
table 1. 

 
Table1. Optical characteristics of smartphone lens 

Wavelengths 486 nm -656 nm 

Field number, FN 2.5 

Semi field of view, FOV/2 41.5 ° 
Entrance pupil semi aperture 0.9 mm 

Image height 3.99 mm 

Focal length 4.5 mm 

Front working distance infinite 

Back focal distance 3 mm 

 
Current applications of artificial intelligence in optics are generally 
restricted to specific optical structures, due to the numerous 
variables at play. In this design strategy, we utilize an OpenAI 
model to overcome the challenges of the design tasks that were 
previously addressed manually and analytically in our studies, 
which were based on global optimization strategies.   
In principle, we transfer the task of writing and editing macros 
(global search and merit function) to an OpenAI model, giving it 
feedback about successful outputs. 
To find an efficient strategy for smartphone camera design, we 
started with a design resolution of 16 megapixels and progressed 
to a design with 21.4 megapixels, increasing the semi FOV from 
38° to 41.5°. 

The main idea is to obtain a useful starting design using a global 
search algorithm (Design Search) in Synopsys OSD, and then train 
an OpenAI model with macros that were successful in exploring 
starting designs.  

As we progressed with the generated starting designs of the 
Design search, we trained a GPT-4 model using macros that 
yielded the best results, along with an explanation of the types of 
operands and constraints used to control optical aberrations, 
distortions, and illumination. OpenAI model, the GPT-4 can process 

textual requests, analyze images, and read text from images. In 
addition, we trained a GPT-4 on the basic equations of applied 
optics related to F-number (FN), entrance pupil diameter (DN), 
field of view (FOV), focal length, and image height. The pre-training 
involves copying text and equations, supplemented with additional 
information derived from textual comments within the GPT-4 
module.  
We began with a smaller FOV of 76 degrees so that the image 
height was lower, suitable for a 16-megapixel camera. Design goals 
are the transverse aberrations' maximum of 0.05 mm, with no ray 
tracing errors and a lens arrangement of convex, concave, and 
convex-concave lenses. Fig. 2 shows the initial designs using 
different macros as we explored the best approach. 
In the first phase, we used a design approach using monitors for 
distortion in the macros and requests for two plastic materials. 
However, obtained starting points implied that weak weights of 
monitors for distortion caused significant ray tracing errors in Fig. 
2 (a) [20]. To overcome this issue, monitor weights were increased 
in macros. In addition, we decreased the number of monitors from 
six to three field points. Such a macro has generated starting 
points, shown in Fig. 2 (b). 

 

 

                                (a)                                                                            ( b) 

Fig. 3. Starting design of smartphone lens for 21.4 megapixel (a) three 
outputs of global search algorithm (b) selected for further optimization. 
 

In the next trial, the monitors for distortion control were 
replaced with monitors for illumination, ensuring that illumination 
gradually decreased toward the field edges. Further, we added a 
request for a cover glass in macros and increased semi-field to 41.5 
degrees. The cover glass protects the sensor and provides 
additional achromatization. We constrained the illumination to 
38% at the edge of the field, with the intention of increasing it 
during optimization. With well-adjusted monitor weights, the 
obtained starting designs in Fig 2. d) showed good performance, 
including proper lens arrangements, accurate ray tracing, and 
transverse aberrations of 0.05 mm or less. The global search 
algorithm explored solutions based on macro parameters, finding 
designs that involved three aspheric coefficients for all lens 
surfaces, the conic constant, and higher-order even aspheres (third 
and sixth orders). The task was performed using two plastic 
materials (OKP4 and ZEON480R). The implemented macros for 
the global search were effective in generating designs with a 
satisfactory design and promising image quality.  
In Fig. 3a), three starting designs from one global search run are 
shown. In this run, we obtained designs with relative illumination 
exceeding 40% and transverse aberrations corrected to 0.05 mm. 



We selected a starting point in Fig. 3 b), which had lens 
arrangement of convex, concave, and convex-concave lenses. 
Fig. 4 illustrates the imaging quality for the central field and RMS 
spot size over field [21]. Imaging quality analysis of photography 
was performed using image tools in Synopsys OSD (colorized 
photography of scientist and inventor Nikola Tesla).  
To simulate the image quality of a part of a photograph, it is 
necessary to increase the number of color wavelengths. In this 
simulation, we obtained a realistic color balance with 7 color 
wavelengths in the visible spectrum.  
 

(a) 

(b) 

Fig. 4.  Starting design assessment: (a) imaging quality analysis of 
photography on central field (b) RMS spot size over field. 

 

Dairy = 2.44λ × FN  =  3.7  micrometers                             (1) 
  
Based on the airy disk criterion, the RMS spot radius should be less 
than 3.7 micrometers over the entire field of view. Given a pixel 
size of 1.12 micrometers for a 16-megapixel sensor, and 
considering that the ideal RMS spot radius should not exceed 2 
pixels, we set a target of 2.24 micrometers for the simulated pixel 
size. The simulation visualizes a region of image covering a width 
of 960 micrometers, while the total sensor width is 6.4 mm.  

As expected for wide-angle lenses, optical aberrations are much 
more noticeable at the edges of the field. The simulation does not 
include distortion, which is about 4% at the edge of the field of 

view (FOV). Macro 1 (see Supplement 1) was used to train the GPT-
4 model for design strategy with assigned plastic materials.  
To explore more possibilities for starting designs, we also tried the 
second design approach, where we included a glass model and 
protective cover glass in the global search algorithm. By allowing 
the algorithm to explore solutions with glass models, we may gain 
better and new shapes of starting designs [22].  
Macro 2, written by the GPT-4 (see Supplement 1) was successful 
after adjusting (fine-tuning model) the monitors for illumination at 
three field points. It should be emphasized that illumination and 
distortion are conflicting constraints, and it is necessary to find a 
balance in the requirements for image quality.  
As shown in Fig. 5 we obtained different starting designs with 
transversal aberration in range of 0.02 to 0.05 mm.    

Fig. 5.  Starting designs of smartphone lens for 21.4 megapixel with glass 
model and cover glass. 

In this design task, the global search algorithm is entrusted with 
identifying the starting design that achieves minimal transverse 
aberrations.  Design Search has selected upper left design in Fig. 5 
as the best choice with minimal transverse aberration. Regarding 
the Modulation Transfer Function (MTF) of smartphone lens, 
criteria is associated with the Nyquist frequency of the sensor. 
Given the sensor's pixel size of 1.12 µm, the system's maximum 
spatial resolution can be determined as:  
 
           𝑉𝑁𝑦𝑞𝑢𝑖𝑠𝑡 = 1 /2 𝑋 𝐶𝑀𝑂𝑆 𝑝𝑖𝑥𝑒𝑙 𝑠𝑖𝑧𝑒 = 446.4  𝑙𝑝 /𝑚𝑚            (2) 

 

The multifield MTF shown in Fig. 6 illustrates that the central field 
and half of the field of view are already within the limits that meet 
the image resolution requirements. The MTF of the central field is 
greater than 0.5 at half of the maximum spatial frequency of 223 
lp/mm.  

 

 

 

 

 

 

Fig. 6.   Multifield modulation transfer function of starting design. 
 
Fig 7. presents imaging quality analysis of selected starting design 
(upper left)  from Fig. 5.  



    

As shown in Fig. 7 (a), starting design already exhibited good 
image quality of photography in central FOV (colorized 
photography of s physicists George Smith and Willard Boyle-
inventors of CCD technology). This result indicates the 
remarkable capabilities of the global search algorithm when the 
requests and operands are set properly.  

 

(a) 

(b) 

Fig. 7.    Imaging quality analysis of photography for starting design with 
glass model on (a) central field, and (b) edge of field. 

 
At this stage, we began developing an interface for 

communication with a GPT-4 model, implemented as a Java 
application. The application is linked to the OpenAI model via API 
(Application Programming Interface) protocol [23]. 

In this context, a GPT-4 was trained to write macros based on 
specified parameters and save them as ready-to-use files for 
activating the global search algorithm within the Synopsys OSD 
software. Several macros with different operand values for 
illumination, which proved effective, were utilized as the training 
examples.  
In addition, to train an OpenAI model about useful starting 
points, we used nine training sets of images as outputs from 
nine different global search runs (90 starting designs). Once 
trained, the framework based on a GPT-4 model can analyze 
the shapes of smartphone lenses it has not previously 
encountered and classify them based on ray tracing and lens 
arrangement. 

Please note one remarkable outcome of the study: using only 
the provided image layouts of 10 designs, the GPT-4 selected the 

same two best starting designs as the global search algorithm, 
which was based on layout and transverse aberration. To 
emphasize, this result was achieved without prior supervised 
training and before any specific requirements related to the design 
of smartphone optics were provided. Table 2 presents the outputs 
of the GPT-4 based on the provided image, using the starting 
designs from Fig. 5.  

The front-end application based on the OpenAI model, featuring 
options for macro creation, evaluation of starting designs and 
interaction with the GPT-4 model, is shown in Fig. 8.    

 

 

 

Fig. 8.   App Interface for the OpenAI model. 

 
Table2. Design evaluation based on the GPT-4 model 

GPT-4 without training 
on design task 

 

GPT-4 with supervised 
training 

Best Design: 
If minimizing spot size and optical 

aberrations is critical: 

• Top-Left and Bottom-

Left systems are 

superior. 

If wide-angle imaging or light 

gathering is the priority: 

• Top-Right or Bottom -

Right 

 
 
 

Final Recommendation: 
If Compactness and Transverse Aberration 

Correction Are Key: 
The Top-Left Design is  better because: 
It achieves sharper edge performance despite 

its slightly less balanced field correction. 
Its compactness makes it easier to fit into slim 

smartphone designs. 
If Wide-Angle Performance and Balanced 

Aberration Correction Are Key: 
The Bottom-Left Design is better because: 
It uses the ideal convex-concave-convex-

concave arrangement. 
It provides more consistent sharpness and 

distortion control across the image field, 

which is essential for wide-angle smartphone 

lenses. 
 

 

 
 

We have introduced restrictions for commands longer than six 
characters but allowed the option to send text and longer 
commands from the app using a password. This way, we have 
introduced authorization for developers to send training 
commands to the GPT-4 in order to prevent misleading data. Lens 
specifications must follow a particular format, such as FN2.5, FV40, 
DN1, IH4, IL45.5, etc (see Application of GPT-4).  



At this stage of the project, we have successfully developed an 
application for generating and evaluating starting designs using 
the OpenAI model. In this respect, proposed methodology enables 
the generation of starting designs for high-resolution smartphone 
lens within a less than 5 minutes using just a single input text to an 
OpenAI application to create macro and one click to run global 
search. 

3. OPTIMIZATION OF STARTING DESIGN WITH RULE-
BASED AI ALGORITHMS 

The optimization of smartphone lenses is crucial for achieving 
high-quality pixels and ultra-sharp resolutions, with modern 
smartphones now exceeding incredible 200 megapixels in flagship 
models. 

One effective and common technique to optimize the image 
quality of smartphone lenses is by utilizing aspherical surfaces. 
This involves increasing the number of higher-order aspherical 
surfaces by introducing coefficients of high-order aspherics 
through simultaneous local optimization. 
Another effective solution is to insert an additional refractive 
element into the optical system. This can be done using the 
automatic element insertion (AEI) feature, which is based on a 
Saddle Point Build algorithm [24][25]. 
In this design task we performed local optimization using rule-
based AI algorithms for automatic aspherical assignment (AAA) 
and automatic replacement of glass (ARG). 
To incorporate aspherics onto all lens surfaces, we gradually 
introduced aspheric coefficients into the merit function, 
monitoring RMS spot size, distortion, and illumination [26].  

Outlined below are the lines of the merit function macro that we 
used to assign 4 aspherical coefficients of 10th order to the first 
four optical surfaces.  

VY 1 G 10 
VY 2 G 10 
VY 3 G 10 
VY 4 G 10 

With such requests, we introduce four more parameters in further 
optimization of starting point in Fig 3.  
Next, we assign aspherical coefficients to next four optical surfaces 
from 5 to 8. Following this principle, we performed gradually and 
steady optimization between local minima of optical system. The 
optimization performed using the applied merit function (see 
supplement 1) indicated that time consumption was highly 
dependent on the number of optimization cycles and the 
complexity of the aspherics. 
Due to the higher-order aspherics, we recommend reducing the 
number of optimization cycles when introducing new coefficient 
terms. It is essential to correct optical aberrations by monitoring 
the RMS spot size under strict constraints on both illumination and 
distortion.  

To introduce an additional four aspheric coefficients on all 
surfaces, the optimization using the merit function  was repeated 
four times for the first two lenses and four times for the second 
two lenses closer to the image plane. It should be emphasized that 
only radially symmetric aspheric coefficients were utilized. 
However, after incorporating 19th-order aspherics on all surfaces 
of the initial design, we did not achieve satisfactory MTF and lateral 
color performance. 

In the next step, we employed the AEI (Automatic Element 
Insertion) algorithm, requiring the insertion of an additional lens 
into the starting design shown in Fig. 3, within the space between 
the 4th and 8th optical surfaces. After determining the optimal 
position for the new element, the algorithm inserted a fourth lens 
with the same material as the lens behind it (ZEON480R). A 19th-
order aspherical surface was also added to both optical surfaces of 
the inserted lens through repeated optimization. Fig. 9 illustrates 
the optimized starting point of a smartphone lens with aspherical 
lenses of higher 19th order. 

 

                                       (a)                                                                                   (b) 

Fig. 9 Final design of smartphone optics with two plastic materials for 21.4 
megapixel (a) 2D  (b) 3D image. 

 

 

                                                                 (a) 

(b)    

 Fig. 10.   Assessment of smartphone lens with two plastic materials: a) 
multi-field modulation transfer function b) relative illumination over field of 

view. 

 
 Lateral color remains bellow 2 micrometers at the edge of the 

field of view. In Fig. 10 (a) MTF analysis shows acceptable 
requirements for image quality of smartphone lens [27].  The MTF 
of the central field at half the Nyquist frequency is greater than 0.5, 



and the full field of view is greater than 0.25. MTF at the spatial 
frequency of 446 lp/mm is close to zero and could be optimized for 
better minima. A distortion is bellow 3 %. The relative illumination 
is greater than 42 percent and is shown in Fig. 10b). 

In Fig. 11, the image quality at the edge of the field at 0.9 FOV 
and in the central field is satisfactory. The sharpness and 
resolution at the edges of the field are comparable to those in the 
central region, meeting the requirements for imaging.   
The RMS spot is less than 2 micrometers in the central field and 
middle of the FOV, while at the edge of the field, it is greater than 4 
micrometers and could still be optimized with further aspheric 
introduction.  We decided not to introduce more than the 19th-
order aspherics into this design, so the introduction of all new 
aspheric surface coefficients takes around 20 minutes. At this 
stage, the GPT-4 model was trained to write a merit function 
macro containing operands for aspheric surfaces, aiding further 
optimization.  

(a) 

(b) 

Fig. 11.    Imaging quality analysis of photography for designed smartphone 
optics with two plastic materials on (a) central field (b) edge of field. 

  
 
 
More specifically, we fine-tuned a GPT-4 model to edit and add 
aspheric coefficients to the merit function based on input to the 
application. In either case, what would traditionally need to be 
done manually to adjust the coefficients of aspherics in a matter of 
minutes, an OpenAI model assists by creating a macro for the merit 
function in seconds. 
Regarding the second starting design with glass model shown in 
Fig. 5 (upper left), we utilized Automatic Replacement Glass (ARG)  

feature to substitute the glass model with a plastic material. 
Previously, we constrained the material index region to plastic 
materials within the macro during the global search of starting 
design.  Additional command lines in the merit function macro 
enabled the replacement of the glass model with plastic materials 
from the unusual glass catalog: 
ARGLASS 3 QUIET     ! Start of ARGLASS input.  

CAT U                                ! Specify the Unusual glass catalog.  

INCLUDE 1 TO 8          ! Surfaces from 1 to 8.  

PREF                               !  Only preferred glass materials 

 GO 
The cover glass was previously determined in the macro for the 
global search using BK7 material index. The ARG algorithm 
successfully identified three suitable plastic materials within one 
minute of optimization. After substituting the glass model, we 
proceeded with the design optimization by introducing additional 
aspheric coefficients to all surfaces of the plastic lenses. 
To further improve image performance, we introduced 18th-order 
aspherics on the first two lenses and 21st-order aspherics on the 
third and fourth lenses. This involved repeated optimization using 
a merit function that varied in terms of the aspheric coefficients.  
Shortcoming of our optimization methodology is following:  
1) we ask an OpenAI model to add 4 new aspheric coefficients to 
the merit function, 
2) open the file of the new merit function created by the OpenAI 
model in SYNOPSYS, and perform optimization,  
3) repeat the first two steps  for new aspheric coefficients. 
 
In principle, it can take no more than 30 minutes, considering a 
well-adjusted, logical, and effective optimization cycle length. It 
should be emphasized that the core design strategy is based on 
minimizing the effort of the optical designer and additional 
analytics grounded in experience and talent.  

The final design, incorporating 21st-order aspheric coefficients 
on the third and fourth lenses, is shown in Fig. 12 in both 2D and 
3D views. The size of the designed smartphone lens, illustrated in 
Fig. 12 (a) is displayed using a coordinate system in millimeters. 
Lens data of designed photo-objectives can be seen in supplement 
1. 

 

 
                         (a)                                                          (b) 

Fig. 12.  Final design of smartphone lens with three plastic materials and 
cover glass for 21.4 megapixel (a) 2D (b) 3D image. 

 

 

 



(a) 

 

(b) 

Fig. 13. Imaging quality analysis of photography on (a) central field (b) edge 
of field. 

Illumination has been enhanced to exceed 49%, compared to 
the initial design of 38%. An analysis of image quality for 
photography is shown in Fig. 13. The resolution achieved is 
satisfactory in both the central region and the field edges. To 
illustrate a more colorful environment, an analysis of the quality of 
a segment of the panoramic photography is presented in Fig.14.  

 

Fig. 14.   Imaging quality analysis of colorful environment on half of field. 

 

In this case, we introduced more complex aspheric surfaces with 
eight coefficients, compensating for the need for an additional lens, 
which could be considered in future optimization. 

The multifield MTF is optimized at a spatial frequency of 446 
lp/mm, where the full field exceeds 0.05, as shown in Figure 15. 
The central FOV exceeds 0.2 at the limit frequency and is greater 
than 0.5 at half the spatial frequency (223 lp/mm), meeting 
common requirements for smartphone optics. The MTF value at 
the field edges is slightly lower, with room for further optimization. 

 

 

Fig. 15.   Multifield modulation transfer function of smartphone 
lens with three plastic materials and cover glass. 

 
The RMS spot size across the entire field is less than 3 

micrometers, and lateral color is controlled within 1.4 
micrometers. Distortion is bellow 4 % at the field edge, and relative 
illumination curve is larger than 49 % over FOV,  as shown in Fig. 
16. 

The GPT-4 framework is trained to identify this layout with 4 
lenses as the most successful smartphone lens design, achieved in 
this environment, delivering a resolution of 21.4 megapixels. 

 

 (a) 



(b) 

Fig. 16.  (a) Distortion of designed smartphone lens (b) relative illumination 
over field of view.    

4. CONCLUSION  

In this paper, we present findings and insights from a study on 
design methodology of smartphone optics by combining 
generative and rule-based AI algorithms.  The innovative approach 
utilizes the GPT-4 module to generate macros for global 
optimization algorithms, enhancing the efficiency of designing 
smartphone lenses. 
A comprehensive global search for optimal starting points was 
conducted, yielding reliable training sets essential for fine-tuned 
model of OpenAI. In this context, generative artificial intelligence – 
the GPT-4 was trained to write macros based on specified 
parameters and save them as ready-to-use files for activating the 
global search algorithm within the Synopsys OSD software. 
Utilizing generated starting designs, the GPT-4 model is trained to 
evaluate the performance of optical layouts by analyzing lens 
configurations and ray tracing principles. In addition, the GPT-4 
was trained to generate a merit function macro containing 
operands for aspheric surfaces and insertion of lens, aiding further 
optimization. 
In this way, we trained generative AI to use rule-based AI 
algorithms in the merit function based on requirements. 
Combining principles and computing power of different 
algorithms, we developed a front-end application featuring options 
for macro creation, evaluation of starting designs, and interaction 
with the OpenAI model. Through this, we designed two 21.4-
megapixel smartphone lenses from different starting points, 
demonstrating the practical value of the proposed design 
methodology in achieving high-performance smartphone optics.  
With this paper we encourage vendors of lens design software to 
implement more advanced features with application of AI, as it 
could significantly enhance design flexibility and innovation in 
optical design.  
The proposed methodology is versatile and can be expanded to 
design and evaluation of various optical systems employing 
synergy of different algorithms.   
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