Combined Rule-Based and Generative Artificial Intelligence in the

Design of Smartphone Optics

NENAD ZoRIcY™, SIMON THIBAULT2, MARIE-ANNE BURCKLEN3, LIJO THOMAS?#4,

MomciLo KRuNIcY>, YUNFENG NIE®

IFaculty of Technical Sciences, University of Novi Sad, 21000 Novi Sad, Serbia

2Centre d’Optique, Photonique et Laser, Université Laval, G1V 0A6 Québec, Canada

3Institut d’Optique Graduate School, University Paris-Saclay, Paris, France

4L3Harris Technologies Inc., L4K-M9W, Toronto, Canada
>Labsoft Al, The Science and Technology Park, 21102, Novi Sad, Serbia

éDepartment of Applied Physics and Photonics, Vrije Universiteit Brussel, B-1050 Brussels, Belgium

*Corresponding author: zoric.de17.2019@uns.ac.rs

Received XX Month XXXX; revised XX Month, XXXX; accepted XX Month XXXX; posted XX Month XXXX (Doc. ID XXXXX); published XX Month XXXX

Abstract: This paper reports on a study of design
methodology for smartphone lenses utilizing generative and
rule-based artificial intelligence (AI) algorithms. The
proposed innovative design method utilize the GPT-4, an
OpenAl model to generate macros for global optimization
algorithms used in designing smartphone lenses. A
comprehensive global search for optimal starting points of
smartphone lenses has been conducted to obtain training
sets. We trained GPT-4 model developing framework for
coding of macros, creation of merit function and evaluation of
obtained starting designs. The results demonstrate the
practical value of the proposed design methodology
based on Al algorithms in the design of a 21.4 megapixel
smartphone lens.

1. INTRODUCTION

We are witnessing and living in an era where machine
intelligence is beginning to influence most domains of science and
engineering.

In 1956, John McCarthy introduced the term Al to describe
machines like the “Logic Theorist” that could reason. According to
Wang [1], Al refers to information processing systems that adapt
to their environment using available resources and knowledge.
Currently, the intelligence quotient (IQ) of artificial intelligence
ranges from 100 to 120, which indicates that it is already more
capable and efficient than most of the average humans in solving
and performing specific tasks. Predictions suggest that very likely,
Al could soon achieve an IQ in the range of several thousand.

The remarkable capabilities of this new form of intelligence in
our world have already provoked significant skepticism and fear
across various professional domains. One group, including
designers, programmers, and engineers, seeks to embrace and
synergize their expertise with these advanced algorithms.
Meanwhile, others view these developments with skepticism and
warn of the potential consequences Al may have on the formation
of future civilization and economy.
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Fig. 1. Increasing trend of research topics on the application of
artificial intelligence in the field of optical engineering.
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The authors of this study believe that the synergy between
human effort and artificial intelligence, through their
complementary contributions, represents a very effective
approach for achieving reliable and high-quality results in optical
design. Traditional optical design relies heavily on iterative
methods led by experienced designers, often demanding extensive
computational resources and domain-specific expertise.

In the last decade, we have witnessed significant advancements
in the application of Al in optics and photonics, evolving from
conceptual research to practical implementation. Three key stages
can be observed throughout this period. The first stage marks the
early research and integration, where researchers began
implementing artificial intelligence into optical networks, offering
more efficient solutions. From 2018 to 2022, there was a rapid
surge in various fields of photonics, driven by machine and deep
learning solutions [2, 3]. Fig. 1 shows statistics based on papers
published in Applied Optics and Optics Express with the keywords:
artificial intelligence, machine learning, and deep learning. Since
2022, the impact of Al on optics and photonics has become even
more pronounced, leading to major technological innovations.

In 2024, John Hopfield and Geoffrey Hinton were awarded the
Nobel Prize in Physics for their pioneering work on artificial neural
networks. In the same year, the XLuminA software was introduced
in super-resolution microscopy, accelerating innovations based on
Alin the field of optics [4].

This study investigates an innovative approach to smartphone
lens design, leveraging generative Al to produce macros of global
search algorithm, and merit function and evaluate starting design.
Generative Al models, such as ChatGPT, have demonstrated an
amazing ability to generate scripts and code that guide
optimization algorithms toward effective solutions. ChatGPT is
based on the neural network using billions of parameters [5].

In scenarios requiring a blend of creativity, visualization, logical
reasoning, and responsiveness to real-time needs, Al-driven design
solutions remain at the threshold of efficiency and clarity. To
illustrate the experience of designers in the sneaker industry
utilizing Al-based application “Imagine an army of little aliens
attempting to draw shoes. They might be fantastic at it, but
they lack the earthly wisdom of what a shoe truly entails. Al-
based applications, like ChatGPT and Midjourney, are still in
their infancy and don’t quite grasp the intricate details of
shoe construction [6].”

Despite the well-known challenges of generative Al, such as errors
or hallucinations, an expert from shoe industry expressed
optimism, describing Al as rocket fuel for creativity. They
emphasized that Al is not a replacement for human creativity but
an amplifier, calling it “an amazing tool guided by human
imagination [7].”

Our experience in training OpenAl model has shown that optical
designers can rely on the code and formulas generated by the Al
large language model (LLM) with a high degree of accuracy.
Currently, deep learning methods can directly generate initial
configurations, including approaches based on supervised learning
[8,9], unsupervised learning [10], and end-to-end models [11].
Although current applications are generally limited to single
structures, introducing dynamic networks holds substantial
potential for solving a broader range of optical configurations.
Dilworth, by incorporating an artificial intelligence (Al feature into
his optical lens design software, SYNOPSYS OSD, demonstrated
remarkable foresight in recognizing the potential of machine

intelligence nearly 40 years ago. The rule-based Al algorithms
within the software could perform complex tasks related to the
evaluation and optimization of optical systems, relying on only a
few textual commands [12].

The application of Al into optical design has been explored in
previous works [13], where rule-based Al [14], and deep-learning
models support the generation of starting designs.

Recently, Yang et al. developed a framework based on deep
learning that uses a step-by-step approach to create lens designs
from scratch, eliminating the need for a starting design. This
method can automatically design both standard and advanced
lenses, such as those used in cellphones, making them compact
and highly efficient [15].

The novelty of our study lies in its application of generative Al as
an active contributor to the design process through the creation of
macros and evaluation of starting designs, enabling the
automation of global search optimization. Additionally, this
generative approach adds value by reducing the time required to
generate merit function macros with optimized aspheric surfaces
for smartphone lenses. By focusing on a rule-based Al algorithms
for automatic aspherical assignment and automatic glass
replacement, the proposed design approach achieves a higher
level of automated lens design.

In that sense, the conducted study lays the foundation for future
advancements in Al applications, ultimately pushing the
boundaries of what is achievable in future of lens design.

The remainder of this paper is structured as follows. Section 2
explains the training of the GPT-4 model for writing macros, as
well as the search for the best methodology for generating the
initial design of smartphone lens. Section 3 addresses the
optimization process of the initial design using rule-based Al
algorithms for adding aspheric surfaces and additional refractive
elements. Section 4 concludes with a discussion of the proposed
methodologies and the advantages brought by the application of Al
in optical design.

2. SUPERVISED TRAINING OF GENERATIVE Al ON
DESIGN SEARCH

The evolution of smartphone optics is driven by the increasing
demand for advanced mobile photography, with users seeking
professional-quality imaging in compact devices.
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Fig. 2. Starting designs of smartphone lens for (a) 16 megapixels camera,
generated with weak weights of distortion control (b) 16 megapixels
camera, generated with strong weights of distortion constraints (c) 21.4



megapixel camera, generated with illumination control in 5 field points (d)
21.4 megapixel camera, generated with illumination control in three field
points.

High-resolution sensors, paired with advancements in
computational imaging, have become a cornerstone of the most
widely accepted smartphones [16]. Emerging trends, including the
integration of aspheric lenses, free-form lenses, and hybrid
materials like glass-polymers, are further transforming
smartphone optics, offering new opportunities to push the
boundaries of mobile imaging [17,18]. Since the invention of CCD
(Charge-Coupled Device) technology, digital photography has been
revolutionizing the world, ushering in an era where images are
increasingly replacing words [19]. Integrating CCD sensors into
smartphones is challenging due to their higher power
consumption and larger size, which is why CMOS sensors are more
commonly used.

To define the image specifications, we selected the Omnivision®
0V21840 CMOS image sensor, which features an active array of
5344 x 4016 pixels, providing a resolution of 21.4 megapixels.

The diagonal of the sensor is 7.90 mm with pixel size of 1.12
micrometers. The image height is defined as half of the sensor's
diagonal, yielding * 3.953mm. To mitigate the risk of image
vignetting and ensure optimal image quality on the sensor array,
the image height is set to 3.99 mm, slightly exceeding the required
value. Optical characteristics of smartphone lens are presented in
table 1.

Tablel. Optical characteristics of smartphone lens
Wavelengths 486 nm -656 nm
Field number, FN 2.5
Semi field of view, FOV/2 415°
Entrance pupil semi aperture 0.9 mm
Image height 3.99 mm
Focal length 4.5 mm
Front working distance infinite
Back focal distance 3 mm

Current applications of artificial intelligence in optics are generally
restricted to specific optical structures, due to the numerous
variables at play. In this design strategy, we utilize an OpenAl
model to overcome the challenges of the design tasks that were
previously addressed manually and analytically in our studies,
which were based on global optimization strategies.

In principle, we transfer the task of writing and editing macros
(global search and merit function) to an OpenAl model, giving it
feedback about successful outputs.

To find an efficient strategy for smartphone camera design, we
started with a design resolution of 16 megapixels and progressed
to a design with 21.4 megapixels, increasing the semi FOV from
38°to41.5°.

The main idea is to obtain a useful starting design using a global
search algorithm (Design Search) in Synopsys OSD, and then train
an OpenAl model with macros that were successful in exploring
starting designs.

As we progressed with the generated starting designs of the
Design search, we trained a GPT-4 model using macros that
yielded the best results, along with an explanation of the types of
operands and constraints used to control optical aberrations,
distortions, and illumination. OpenAl model, the GPT-4 can process

textual requests, analyze images, and read text from images. In
addition, we trained a GPT-4 on the basic equations of applied
optics related to F-number (FN), entrance pupil diameter (DN),
field of view (FOV), focal length, and image height. The pre-training
involves copying text and equations, supplemented with additional
information derived from textual comments within the GPT-4
module.

We began with a smaller FOV of 76 degrees so that the image
height was lower, suitable for a 16-megapixel camera. Design goals
are the transverse aberrations' maximum of 0.05 mm, with no ray
tracing errors and a lens arrangement of convex, concave, and
convex-concave lenses. Fig. 2 shows the initial designs using
different macros as we explored the best approach.

In the first phase, we used a design approach using monitors for
distortion in the macros and requests for two plastic materials.
However, obtained starting points implied that weak weights of
monitors for distortion caused significant ray tracing errors in Fig.
2 (a) [20]. To overcome this issue, monitor weights were increased
in macros. In addition, we decreased the number of monitors from
six to three field points. Such a macro has generated starting
points, shown in Fig. 2 (b).

@ (b)
Fig. 3. Starting design of smartphone lens for 21.4 megapixel (a) three
outputs of global search algorithm (b) selected for further optimization.

In the next trial, the monitors for distortion control were
replaced with monitors for illumination, ensuring that illumination
gradually decreased toward the field edges. Further, we added a
request for a cover glass in macros and increased semi-field to 41.5
degrees. The cover glass protects the sensor and provides
additional achromatization. We constrained the illumination to
38% at the edge of the field, with the intention of increasing it
during optimization. With well-adjusted monitor weights, the
obtained starting designs in Fig 2. d) showed good performance,
including proper lens arrangements, accurate ray tracing, and
transverse aberrations of 0.05 mm or less. The global search
algorithm explored solutions based on macro parameters, finding
designs that involved three aspheric coefficients for all lens
surfaces, the conic constant, and higher-order even aspheres (third
and sixth orders). The task was performed using two plastic
materials (OKP4 and ZEON480R). The implemented macros for
the global search were effective in generating designs with a
satisfactory design and promising image quality.

In Fig. 3a), three starting designs from one global search run are
shown. In this run, we obtained designs with relative illumination
exceeding 40% and transverse aberrations corrected to 0.05 mm.



We selected a starting point in Fig. 3 b), which had lens
arrangement of convex, concave, and convex-concave lenses.

Fig. 4 illustrates the imaging quality for the central field and RMS
spot size over field [21]. Imaging quality analysis of photography
was performed using image tools in Synopsys OSD (colorized
photography of scientist and inventor Nikola Tesla).

To simulate the image quality of a part of a photograph, it is
necessary to increase the number of color wavelengths. In this
simulation, we obtained a realistic color balance with 7 color
wavelengths in the visible spectrum.
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Fig. 4. Starting design assessment: (a) imaging quality analysis of
photography on central field (b) RMS spot size over field.

Dairy = 2.44A x FN = 3.7 micrometers @

Based on the airy disk criterion, the RMS spot radius should be less
than 3.7 micrometers over the entire field of view. Given a pixel
size of 1.12 micrometers for a 16-megapixel sensor, and
considering that the ideal RMS spot radius should not exceed 2
pixels, we set a target of 2.24 micrometers for the simulated pixel
size. The simulation visualizes a region of image covering a width
0of 960 micrometers, while the total sensor width is 6.4 mm.

As expected for wide-angle lenses, optical aberrations are much
more noticeable at the edges of the field. The simulation does not
include distortion, which is about 4% at the edge of the field of

view (FOV). Macro 1 (see Supplement 1) was used to train the GPT-
4 model for design strategy with assigned plastic materials.

To explore more possibilities for starting designs, we also tried the
second design approach, where we included a glass model and
protective cover glass in the global search algorithm. By allowing
the algorithm to explore solutions with glass models, we may gain
better and new shapes of starting designs [22].

Macro 2, written by the GPT-4 (see Supplement 1) was successful
after adjusting (fine-tuning model) the monitors for illumination at
three field points. It should be emphasized that illumination and
distortion are conflicting constraints, and it is necessary to find a
balance in the requirements for image quality.

As shown in Fig. 5 we obtained different starting designs with
transversal aberration in range of 0.02 to 0.05 mm.

& W

Fig. 5. Starting designs of smartphone lens for 21.4 megapixel with glass
model and cover glass.

In this design task, the global search algorithm is entrusted with
identifying the starting design that achieves minimal transverse
aberrations. Design Search has selected upper left design in Fig. 5
as the best choice with minimal transverse aberration. Regarding
the Modulation Transfer Function (MTF) of smartphone lens,
criteria is associated with the Nyquist frequency of the sensor.
Given the sensor's pixel size of 1.12 pm, the system's maximum
spatial resolution can be determined as:

VNyquist=1 /2 X CMOS pixel size = 4464 lp /mm (2)

The multifield MTF shown in Fig. 6 illustrates that the central field
and half of the field of view are already within the limits that meet
the image resolution requirements. The MTF of the central field is
greater than 0.5 at half of the maximum spatial frequency of 223
Ip/mm.
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Fig. 6. Multifield modulation transfer function of starting design.

Fig 7. presents imaging quality analysis of selected starting design
(upper left) from Fig. 5.



As shown in Fig. 7 (a), starting design already exhibited good
image quality of photography in central FOV (colorized
photography of s physicists George Smith and Willard Boyle-
inventors of CCD technology). This result indicates the
remarkable capabilities of the global search algorithm when the
requests and operands are set properly.
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Fig. 7. Imaging quality analysis of photography for starting design with
glass model on (a) central field, and (b) edge of field.

At this stage, we began developing an interface for
communication with a GPT-4 model, implemented as a Java
application. The application is linked to the OpenAl model via API
(Application Programming Interface) protocol [23].

In this context, a GPT-4 was trained to write macros based on

specified parameters and save them as ready-to-use files for
activating the global search algorithm within the Synopsys OSD
software. Several macros with different operand values for
illumination, which proved effective, were utilized as the training
examples.
In addition, to train an OpenAl model about useful starting
points, we used nine training sets of images as outputs from
nine different global search runs (90 starting designs). Once
trained, the framework based on a GPT-4 model can analyze
the shapes of smartphone lenses it has not previously
encountered and classify them based on ray tracing and lens
arrangement.

Please note one remarkable outcome of the study: using only
the provided image layouts of 10 designs, the GPT-4 selected the

same two best starting designs as the global search algorithm,
which was based on layout and transverse aberration. To
emphasize, this result was achieved without prior supervised
training and before any specific requirements related to the design
of smartphone optics were provided. Table 2 presents the outputs
of the GPT-4 based on the provided image, using the starting
designs from Fig. 5.

The front-end application based on the OpenAl model, featuring
options for macro creation, evaluation of starting designs and
interaction with the GPT-4 model, is shown in Fig. 8.

Artificial Intelligence Assistance

Please specify the parameters of the smartphone lens:

Lens Specifications:

Enter EN, FOV/2, DN/2, Image Helght, Focal Length, Number of Lenses, llluminaticn, Glass Maler

Enter Text for ChatGPT:

Enter Training Password:

Enter ‘passward' for training

Sen

Generate

Upload Design for Evaluation:

Choose File | No fie chosen

Fig. 8. App Interface for the OpenAl model

Table2. Design evaluation based on the GPT-4 model

GPT-4 without training
on design task

GPT-4 with supervised
training

Best Design:
If minimizing spot size and optical
aberrations is critical:

.o Top-Left and Bottom-
Left systems are
superior.

If wide-angle imaging or light
gathering is the priority:

. Top-Right or Bottom -
Right

Final Recommendation:
If Compactness and Transverse Aberration
Correction Are Key:
The Top-Left Design is better because:
It achieves sharper edge performance despite
its slightly less balanced field correction.
Its compactness makes it easier to fit into slim
smartphone designs.
If Wide-Angle Performance and Balanced
Aberration Correction Are Key:
The Bottom-Left Design is better because:
It uses the ideal convex-concave-convex-
concave arrangement.
It provides more consistent sharpness and
distortion control across the image field,
which is essential for wide-angle smartphone
lenses.

We have introduced restrictions for commands longer than six
characters but allowed the option to send text and longer
commands from the app using a password. This way, we have
introduced authorization for developers to send training
commands to the GPT-4 in order to prevent misleading data. Lens
specifications must follow a particular format, such as FN2.5, FV40,
DN1, IH4, IL45.5, etc (see Application of GPT-4).



At this stage of the project, we have successfully developed an
application for generating and evaluating starting designs using
the OpenAl model. In this respect, proposed methodology enables
the generation of starting designs for high-resolution smartphone
lens within a less than 5 minutes using just a single input text to an
OpenAl application to create macro and one click to run global
search.

3. OPTIMIZATION OF STARTING DESIGN WITH RULE-
BASED Al ALGORITHMS

The optimization of smartphone lenses is crucial for achieving
high-quality pixels and ultra-sharp resolutions, with modern
smartphones now exceeding incredible 200 megapixels in flagship
models.

One effective and common technique to optimize the image
quality of smartphone lenses is by utilizing aspherical surfaces.
This involves increasing the number of higher-order aspherical
surfaces by introducing coefficients of high-order aspherics
through simultaneous local optimization.

Another effective solution is to insert an additional refractive
element into the optical system. This can be done using the
automatic element insertion (AEI) feature, which is based on a
Saddle Point Build algorithm [24][25].

In this design task we performed local optimization using rule-
based Al algorithms for automatic aspherical assignment (AAA)
and automatic replacement of glass (ARG).

To incorporate aspherics onto all lens surfaces, we gradually
introduced aspheric coefficients into the merit function,
monitoring RMS spot size, distortion, and illumination [26].

Outlined below are the lines of the merit function macro that we
used to assign 4 aspherical coefficients of 10th order to the first
four optical surfaces.

VY1G10

VY2G10

VY3G10

VY4G10

With such requests, we introduce four more parameters in further
optimization of starting point in Fig 3.

Next, we assign aspherical coefficients to next four optical surfaces
from 5 to 8. Following this principle, we performed gradually and
steady optimization between local minima of optical system. The
optimization performed using the applied merit function (see
supplement 1) indicated that time consumption was highly
dependent on the number of optimization cycles and the
complexity of the aspherics.

Due to the higher-order aspherics, we recommend reducing the
number of optimization cycles when introducing new coefficient
terms. It is essential to correct optical aberrations by monitoring
the RMS spot size under strict constraints on both illumination and
distortion.

To introduce an additional four aspheric coefficients on all
surfaces, the optimization using the merit function was repeated
four times for the first two lenses and four times for the second
two lenses closer to the image plane. It should be emphasized that
only radially symmetric aspheric coefficients were utilized.
However, after incorporating 19th-order aspherics on all surfaces
of the initial design, we did not achieve satisfactory MTF and lateral
color performance.

In the next step, we employed the AEI (Automatic Element
Insertion) algorithm, requiring the insertion of an additional lens
into the starting design shown in Fig. 3, within the space between
the 4th and 8th optical surfaces. After determining the optimal
position for the new element, the algorithm inserted a fourth lens
with the same material as the lens behind it (ZEON480R). A 19th-
order aspherical surface was also added to both optical surfaces of
the inserted lens through repeated optimization. Fig. 9 illustrates
the optimized starting point of a smartphone lens with aspherical
lenses of higher 19th order.

@) (b)
Fig. 9 Final design of smartphone optics with two plastic materials for 21.4

megapixel (a) 2D (b) 3D image.
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Fig. 10. Assessment of smartphone lens with two plastic materials: a)
multi-field modulation transfer function b) relative illumination over field of
view.

Lateral color remains bellow 2 micrometers at the edge of the
field of view. In Fig. 10 (a) MTF analysis shows acceptable
requirements for image quality of smartphone lens [27]. The MTF
of the central field at half the Nyquist frequency is greater than 0.5,



and the full field of view is greater than 0.25. MTF at the spatial
frequency of 446 Ip/mm is close to zero and could be optimized for
better minima. A distortion is bellow 3 %. The relative illumination
is greater than 42 percent and is shown in Fig. 10b).

In Fig. 11, the image quality at the edge of the field at 0.9 FOV

and in the central field is satisfactory. The sharpness and
resolution at the edges of the field are comparable to those in the
central region, meeting the requirements for imaging.
The RMS spot is less than 2 micrometers in the central field and
middle of the FOV, while at the edge of the field, it is greater than 4
micrometers and could still be optimized with further aspheric
introduction. We decided not to introduce more than the 19th-
order aspherics into this design, so the introduction of all new
aspheric surface coefficients takes around 20 minutes. At this
stage, the GPT-4 model was trained to write a merit function
macro containing operands for aspheric surfaces, aiding further
optimization.
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Fig. 11. Imaging quality analysis of photography for designed smartphone
optics with two plastic materials on (a) central field (b) edge of field.

More specifically, we fine-tuned a GPT-4 model to edit and add
aspheric coefficients to the merit function based on input to the
application. In either case, what would traditionally need to be
done manually to adjust the coefficients of aspherics in a matter of
minutes, an OpenAl model assists by creating a macro for the merit
function in seconds.

Regarding the second starting design with glass model shown in
Fig. 5 (upper left), we utilized Automatic Replacement Glass (ARG)

feature to substitute the glass model with a plastic material.
Previously, we constrained the material index region to plastic
materials within the macro during the global search of starting
design. Additional command lines in the merit function macro
enabled the replacement of the glass model with plastic materials
from the unusual glass catalog:

ARGLASS 3 QUIET ! Start of ARGLASS input.

CATU ! Specify the Unusual glass catalog.
INCLUDE1TO8  !Surfacesfrom1to8.

PREF ! Only preferred glass materials
GO

The cover glass was previously determined in the macro for the
global search using BK7 material index. The ARG algorithm
successfully identified three suitable plastic materials within one
minute of optimization. After substituting the glass model, we
proceeded with the design optimization by introducing additional
aspheric coefficients to all surfaces of the plastic lenses.

To further improve image performance, we introduced 18th-order
aspherics on the first two lenses and 21st-order aspherics on the
third and fourth lenses. This involved repeated optimization using
a merit function that varied in terms of the aspheric coefficients.
Shortcoming of our optimization methodology is following:

1) we ask an OpenAl model to add 4 new aspheric coefficients to
the merit function,

2) open the file of the new merit function created by the OpenAl
model in SYNOPSYS, and perform optimization,

3) repeat the first two steps for new aspheric coefficients.

In principle, it can take no more than 30 minutes, considering a
well-adjusted, logical, and effective optimization cycle length. It
should be emphasized that the core design strategy is based on
minimizing the effort of the optical designer and additional
analytics grounded in experience and talent.

The final design, incorporating 21st-order aspheric coefficients
on the third and fourth lenses, is shown in Fig. 12 in both 2D and
3D views. The size of the designed smartphone lens, illustrated in
Fig. 12 (a) is displayed using a coordinate system in millimeters.
Lens data of designed photo-objectives can be seen in supplement
1.

o
=
o

[

@ ()

Fig. 12. Final design of smartphone lens with three plastic materials and
cover glass for 21.4 megapixel (a) 2D (b) 3D image.
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Fig. 13. Imaging quality analysis of photography on (a) central field (b) edge
of field.

[llumination has been enhanced to exceed 49%, compared to
the initial design of 38%. An analysis of image quality for
photography is shown in Fig. 13. The resolution achieved is
satisfactory in both the central region and the field edges. To
illustrate a more colorful environment, an analysis of the quality of
a segment of the panoramic photography is presented in Fig.14.
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Fig. 14. Imaging quality analysis of colorful environment on half of field.

In this case, we introduced more complex aspheric surfaces with
eight coefficients, compensating for the need for an additional lens,
which could be considered in future optimization.

The multifield MTF is optimized at a spatial frequency of 446
lp/mm, where the full field exceeds 0.05, as shown in Figure 15.
The central FOV exceeds 0.2 at the limit frequency and is greater
than 0.5 at half the spatial frequency (223 lp/mm), meeting
common requirements for smartphone optics. The MTF value at
the field edges is slightly lower, with room for further optimization.
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Fig. 15. Multifield modulation transfer function of smartphone
lens with three plastic materials and cover glass.

The RMS spot size across the entire field is less than 3
micrometers, and lateral color is controlled within 1.4
micrometers. Distortion is bellow 4 % at the field edge, and relative
illumination curve is larger than 49 % over FOV, as shown in Fig.
16.

The GPT-4 framework is trained to identify this layout with 4
lenses as the most successful smartphone lens design, achieved in
this environment, delivering a resolution of 21.4 megapixels.
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Fig. 16. (a) Distortion of designed smartphone lens (b) relative illumination
over field of view.

4. CONCLUSION

In this paper, we present findings and insights from a study on
design methodology of smartphone optics by combining
generative and rule-based Al algorithms. The innovative approach
utilizes the GPT-4 module to generate macros for global
optimization algorithms, enhancing the efficiency of designing
smartphone lenses.

A comprehensive global search for optimal starting points was
conducted, yielding reliable training sets essential for fine-tuned
model of OpenAl. In this context, generative artificial intelligence -
the GPT-4 was trained to write macros based on specified
parameters and save them as ready-to-use files for activating the
global search algorithm within the Synopsys OSD software.
Utilizing generated starting designs, the GPT-4 model is trained to
evaluate the performance of optical layouts by analyzing lens
configurations and ray tracing principles. In addition, the GPT-4
was trained to generate a merit function macro containing
operands for aspheric surfaces and insertion of lens, aiding further
optimization.

In this way, we trained generative Al to use rule-based Al
algorithms in the merit function based on requirements.
Combining principles and computing power of different
algorithms, we developed a front-end application featuring options
for macro creation, evaluation of starting designs, and interaction
with the OpenAl model. Through this, we designed two 21.4-
megapixel smartphone lenses from different starting points,
demonstrating the practical value of the proposed design
methodology in achieving high-performance smartphone optics.
With this paper we encourage vendors of lens design software to
implement more advanced features with application of Al as it
could significantly enhance design flexibility and innovation in
optical design.

The proposed methodology is versatile and can be expanded to
design and evaluation of various optical systems employing
synergy of different algorithms.
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