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Abstract: Distributed acoustic sensor (DAS) is a promising technology for real-time 7 
monitoring of wellbores and other infrastructures. However, the desired signals are often 8 
overwhelmed by background and environmental noise inherent in field applications. We 9 
present a suite of computationally inexpensive techniques for the real-time extraction of gas 10 
signatures from noisy DAS data acquired in a 5163-ft-deep wellbore. The techniques are 11 
implemented on three well-scale DAS datasets, each representing multiphase flow conditions 12 
with different gas injection volumes, fluid circulation rates, and injection methods. The 13 
proposed denoising techniques not only helped in optimizing the gas slug signature despite the 14 
high background noise, but also reduced the DAS data size without compromising the signal 15 
quality.  16 
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1. Introduction 20 
Optical fiber-based distributed acoustic sensors (DAS) are considered a promising 21 

technology for real-time monitoring because of their ability to provide distributed acoustic or 22 
vibration measurements simultaneously along the entire length of the installed fiber at a high 23 
spatial and temporal resolution [1]. In recent years, they have gained increasing popularity in 24 
the petroleum industry for the monitoring of wellbores and reservoirs owing to their many 25 
advantages over traditional surveillance methods [2]. They are lightweight, chemically passive, 26 
immune to electromagnetic influence, and do not require any electronics along the optical path 27 
[3]. However, owing to their high sensitivity, DAS signals are often overwhelmed by 28 
environmental noise inherent to the dynamic and harsh downhole conditions in a wellbore [4]. 29 
Thus, signal processing and denoising techniques are necessary for extracting the signatures of 30 
interest from the background noise. Additionally, DAS generates large volumes of streaming 31 
data due to the data acquisition at high spatial and temporal frequency. This can result in data 32 
size in the order of terabytes per day, for an average well length. Since many oil fields operate 33 
in remote locations with limited bandwidth, processing, storing, and interpreting voluminous 34 
DAS data in real-time can be difficult. To address these challenges, this study presents a suite 35 
of computationally inexpensive signal processing techniques for extracting the signals of 36 
interest from noisy DAS measurements in real-time, while also addressing the voluminous data 37 
handling issues.  38 

The workflows are demonstrated on DAS datasets acquired during multiphase flow tests in 39 
a 5163-ft-deep wellbore. The goal was to optimize the detection and visualization of gas 40 
(nitrogen) bubbles through a rapidly circulating column of wellbore fluid (water) in real-time. 41 
These tests were aimed at mimicking well control conditions that arise when an unwanted influx 42 
of formation gas (also known as a “kick”) enters the wellbore during workover, drilling, or 43 
completion operations. If not detected and mitigated in time, the unloading of gas influx at the 44 
surface can lead to blowout conditions that can result in ecological and economic disaster [5]. 45 
Traditional kick detection/monitoring technologies rely primarily on surface-based measurements, 46 
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which might be insufficient for real-time monitoring due to their latency and limited spatial 47 
resolution [5,6]. Fiber-optic sensors can overcome these limitations by providing data across the 48 
entire length of the installed fiber on a wellbore and/or drilling riser to inform gas kick location in 49 
real-time [7-9]. Three DAS datasets are analyzed in this study, each representing different gas 50 
influx volumes, fluid circulating conditions, and gas injection methods in well-scale settings. 51 
The efficacy of the different denoising techniques to optimize gas detection is illustrated using 52 
both the raw and processed DAS data. The effect of DAS acquisition parameters, such as gauge 53 
length and time frame, on the signal quality, is also evaluated using the experimental data.    54 

   55 

2. Experimental Setup 56 
The data analyzed in this work was acquired at the Petroleum Engineering Research, Training, 57 
and Testing (PERTT) lab at Louisiana State University (LSU) in a 5,163-ft-deep wellbore. The 58 
test well (Fig. 1a) has a cemented casing of 9.625 in. outer diameter (OD) and a production 59 
tubing of 2.875 in. OD to a depth of 5025 ft. The DAS measurements were obtained using a 60 
single-mode fiber that was pumped in an optical control line strapped to the outside of the 61 
production tubing using steel clamps. Fig. 1d shows the schematic of the wellbore, including 62 
the casing and tubing dimensions, along with the optical interrogator connected to the wellbore 63 
fiber at surface. For all tests, the length of the fiber under test is 5,025 ft (1.53 km) in the well. 64 
In addition to the fiber-optic sensor, the well is also instrumented with downhole temperature 65 
and pressure gauges, surface flowmeters, and adjustable chokes to regulate the back pressure.  66 

A series of multiphase flow experiments were conducted in the well to study gas migration 67 
dynamics in static and circulating wellbore fluid. DAS data from three experimental tests are 68 
analyzed in this study that represent different gas (nitrogen) influx volumes, fluid (water) 69 
circulation rates, and gas injection conditions, as summarized in Table 1. Commercially 70 
available optical interrogator units were used for the DAS acquisition that combine the 71 
Rayleigh backscattered light from the single-mode fiber with a local oscillator in a heterodyne 72 
process to extract the optical phase from the signal. The measurement specifications for DAS 73 
acquisition are summarized in Table 2. Trials 1 and 2 utilize a DAS interrogator that stores the 74 
acquired vibration data in the form of strain rate with a fixed gauge length. For Trial-3, a 75 
different interrogator was used that stores the velocity profile across the fiber which can be 76 
converted to strain rate in post-processing using a desired gauge length [10].  77 

The experiments are schematically represented in Figs. 1b through 1d, where the orange 78 
color indicates the nitrogen gas slug, blue color indicates the wellbore fluid (water), and the 79 
orange and blue arrows indicate the direction of gas displacement and water circulation, 80 
respectively. In the first trial (Fig. 1b), a small quantity (2 barrels or bbl) of gas was injected 81 
into the tubing and allowed to migrate into the water-filled annulus while the pump was turned 82 
off. The resulting DAS data was free of the pump and circulating fluid noise and therefore used 83 
as a baseline for comparison with the relatively nosier data from the other two trials where 84 
water was pumped at high rates. Real oilfield applications are seldom devoid of pump noise 85 
because fluid circulation accompanies production, injection, and drilling operations. To account 86 
for this, in the other two trials (Trial-2 and Trial-3), gas displacement was monitored while the 87 
wellbore water was circulated at high rates. In Trial-2 (Fig. 1c), the gas influx was simulated 88 
by injecting 15 bbl of nitrogen gas slug down the tubing and subsequently displacing it by 89 
circulating water at 200 gallons per minute (gpm) volumetric flow rate. Water circulation is 90 
continued for the entire duration of the trial until the gas is completely removed from the 91 
wellbore annulus to the surface. In the final trial (Trial-3), a much larger nitrogen gas slug of 92 
80 bbl was injected from the annulus side to simulate a “gas below BOP (blowout preventer)” 93 
scenario (Fig. 1d). Once the gas injection stopped, the well system was given some time to 94 
equilibrate, resulting in the expansion of the injected gas cap. Subsequently, the gas column 95 
was pushed down through the annulus with water at 250 gpm rate while taking returns from the 96 
tubing with the choke fully open. In comparison to Trial-1, the DAS data obtained in Trials 2 97 



and 3 were impacted by the vibrations due to the pump and fluid circulation noise and therefore 98 
required additional signal conditioning and denoising to optimize gas slug detection. 99 

The resulting DAS data was used to monitor the precise position of the top and bottom of 100 
the gas slug region in the wellbore in real-time, as conventional point sensors and gauges lack 101 
this ability. This information is used to track the changing gas slug lengths as well as the influx 102 
velocity as the gas-liquid mixture travels across the annulus and predict the time of arrival of 103 
gas at surface. These parameters ultimately dictate the well control procedure needed to manage 104 
the kick and prevent blowout incidents. The gas slug lengths and displacement velocities vary 105 
across the wellbore due to the changing pressures and hence the dynamic multiphase 106 
displacement behavior needs to be closely monitored.  107 

 108 
Fig. 1. (a) Test well used in the study. Schematics of multiphase flow condition during (b) Trial-1 (c) Trial-2 (d) Trial-109 
3. For all the trials, the length of the fiber under test is 5,025 ft (1.53 km).  110 
 111 

Table 1. Operating conditions during the three experimental trials. 112 
 113 

Trial  
Injection 

volume (bbl) 

Initial gas location 

in the annulus 

Pump rate 

(gpm) 

Direction of water 

flow 

Direction of gas 

displacement 

1 2 Bottom 0 No water flow Up the annulus 

2 15 Bottom 200 
Down the tubing and 

up the annulus 
Up the annulus 

3 80 Top ~250 
Down the annulus 

and up the tubing. 
Down the annulus 

 114 
Table 2. Measurement specifications of the DAS interrogator unit (IU) used during the three trials.  115 

 116 
Parameter IU Specifications for Trials 1 and 2  IU Specifications for Trial-3 

Optical fiber Single-mode Single-mode  

Range  9.94 miles (16 km) 4.97 miles (8 km) 

Spatial resolution 4.92 ft  (1.5 m) 16.07 ft (4.9 m) 

Sampling interval 2.53 ft (0.77 m) 8.03 ft  (2.45 m) 

Sampling frequency 10 kHz 4 kHz 

3. Methodology 117 

This section explains the different signal processing techniques that were implemented on the 118 
DAS data to optimize the detection and visualization of gas displacement during the 119 



experimental trials. The raw DAS vibration data is obtained in the form of strain rate 120 
information as a function of time at any given location along the fiber. The amount of additional 121 
signal processing required for a given spatial-temporal DAS vibration data depends on the 122 
clarity of the signal (or feature) of interest. Ten-second frames of DAS vibration data for Trials 123 
1, 2, and 3 are shown in Fig. 2. The gas signature (including the top and bottom of the gas slug 124 
region which becomes a two-phase gas-liquid mixture in the well) is clearly visible in the static 125 
water column and annotated for Trial-1 in Fig. 2a. However, for Trials 2 and 3, despite the 126 
larger amount of injected gas slug, the gas signature cannot be identified because the signal is 127 
buried in the tmp and flow noise due to the high water circulation rates. Hence, there is a need 128 
for further signal conditioning and denoising to optimize the gas feature detection.  129 

 130 

(a)    (b)  

(c)  
Fig 2. Sample ten-second time frames of raw DAS vibration data for (a) Trial-1 where the top and bottom of 

the gas slug region are clearly visible (b) Trial-2 and (c) Trial-3. 

 131 
A suite of computationally inexpensive real-time implementable signal processing and 132 

denoising techniques are described below. These methods not only improve the signal quality, 133 
but also reduce the DAS data storage needs. Depending on the amount of background noise 134 
and level of signal distortion, one or more of these methods can be utilized.  135 

 136 
(a) Mean  137 
Starting with one of the most basic techniques, a moving average or mean is calculated on the 138 
DAS time-series data. Signal averaging can help in reducing the noise without compromising 139 
details [11]. Consider the raw DAS strain rate or vibration data expressed as 𝐾 time frames and 140 
each time frame represented as 𝑄 ∈ ℝ𝐷𝑋𝑇, where 𝐷  and 𝑇 are the numbers of the samples in 141 
the space and time dimensions, respectively. Mean is computed on each time frame using Eq. 142 
(1). and the computed mean across all the K time frames is stored as a single matrix as 143 

𝑀𝐷𝑋𝐾.𝐴 =
Σ𝑡=1
𝑇 𝑄𝑑𝑡

𝑇
∈ ℝ𝐷𝑋1...................................................................................................(1) 144 

 145 
(b) Standard deviation  146 



Standard deviation is another computationally inexpensive technique that can help in enhancing 147 
the signal-to-noise-ratio (SNR), especially for dynamic processes. Standard deviation of each 148 
time frame is computed using Eq. (2). This can be calculated for all the time frames and 149 
appended as 𝑆𝑇𝐷𝐷𝑋𝐾. 150 

𝑆𝐷𝑋1 = √
1

𝑇−1
Σ𝑖=1 
𝑇 |𝑄𝑑𝑖 − 𝐴𝑑|

2 …........................................................................(2) 151 

 152 
 (c) Root mean square (RMS)  153 
Another treatment that is simple to execute in real time is the RMS, which can be derived using 154 
Eq. 3 and the resulting outcomes of different time frames can be stored in a single matrix as 155 
𝑅𝑀𝑆𝐷𝑋𝐾. This method can help in smoothing out rapidly changing signals, such as noise [12].  156 

𝑅 = √Σ𝑖=1
𝑇 |𝑄𝑑𝑖|

2

𝑇
∈ ℝ𝐷𝑋1…..................................................................................(3) 157 

 158 
(d) Frequency band energy (FBE) 159 
FBE is a powerful signal processing technique that not only reduces the DAS data storge space 160 
but also reduces the noise by filtering the desired frequency range [2].  Fast Fourier transform 161 
(FFT) is applied to the time-series data, and the resultant magnitude is denoted as 𝐻 ∈ ℝ𝐷𝑋𝐹 162 
where 𝐷  and 𝐹  are the same numbers of samples in 𝑄 , but in the space and frequency 163 

dimension. Then FBE is calculated as 𝐺 = Σ𝑖=𝑓𝑙
𝑓ℎ 𝐻𝑑𝑖

2 ∈ ℝ𝐷𝑋1 where 𝑓𝑙 , and 𝑓ℎ are lower and 164 

higher cut-off frequencies of the selected frequency band range. Subsequently FBE is 165 
calculated for all the 𝐾 time frames and the resultant is denoted as 𝐹𝐵𝐸[𝑓𝑙−𝑓ℎ] ∈ ℝ𝐷𝑋𝐾  166 
 167 
(e) Fourier space filtering 168 
Implementation of averaging or filtering can sometimes result in undesired horizontal or 169 
vertical bands in the processed signal. These bands may also be present inherently present in 170 
fiber-optic sensor data due to the non-uniform fiber coupling. One method to remove these is 171 
using 2D-FFT filtering. Let's consider the processed DAS data using the above-mentioned 172 
techniques be denoted as 𝐶 ∈ ℝ𝐷𝑋𝐾. This data matrix can be converted into Fourier space using 173 
2D-FFT and labeled as 𝐸 ∈ ℂ𝑊𝑋𝑌, where 𝑊 and 𝑌 are same number of elements in Fourier 174 
space as 𝐷 and  𝐾 . The frequency components which contribute to the noisy bands (such as the 175 
DC components which are close to the origin) can then be replaced with zeros and transformed 176 
back to space and time domain.  177 

 178 
(f) Gradient filter 179 
This filter computes the gradient depending on the appearance of the bands. If the noisy bands 180 
are on the time axis of 𝐶 , then the gradient with respect to time is computed as shown as Eq 4 181 
and labeled as 𝑃 ∈ ℝ𝐷𝑋𝐾−1. If noisy bands are dominant in the depth axis, gradient is computed 182 
using Eq 4 but in-depth direction and labeled as 𝑃 ∈ ℝ𝐷−1𝑋𝐾.  183 

𝑃𝑑,𝑖−1 = 𝐶𝑑,𝑖 − 𝐶𝑑,𝑖−1 ∀ 𝑖 = 2,3,4… . 𝐾........................................................(4)    184 
 185 

(g) Gradient-based iterative destriping algorithm (GBDIA) 186 
In this technique, a gradient mask is used to filter the noisy image or data matrix in the Fourier 187 
space by doing element wise matrix multiplication with the generated gradient mask. The data 188 
is then converted back to the space and time domain. GBDIA has been deployed for 189 
successfully destriping the satellite images [13].  190 

Gradient mask is generated by first creating a matrix called 𝑇𝐸𝑀𝑃 ∈ ℝ𝐷𝑋 
𝐾

2using Eq. 5. The 191 
matrix is then flipped horizontally and appended to its original as shown in Eq. 6 and labeled 192 
as 𝐹𝐼 ∈ ℝ𝐷𝑋𝐾. 193 

 194 



𝑇𝐸𝑀𝑃𝑖𝑗 =
(𝑗−1)

𝐾
∈ ℝ𝐷𝑋 

𝐾

2…............................................................................(5) 195 

where 𝑖 = 1,  2,  3,  .  .  .  𝐷  and  𝑗 = 1,  2,  3,  .  .  .  
𝐾

2
. 196 

𝐹𝐼 = [𝑇𝐸𝑀𝑃 𝑇𝐸𝑀𝑃
𝑑(

𝐾

2 
−1+𝑗)

] ∈ ℝ𝐷𝑋𝐾 ….....................................................(6) 197 

where 𝑗 = 1,  2,  3,  .  .  .  
𝐾

2
 198 

A new matrix  𝑊𝐼  ∈  ℝ𝐷𝑋𝐾  is created by implementing equation 5 and 6 but in the column 199 
direction. . Then the gradient mask is computed using Eq. 7 and 8 where 𝑡𝑜𝑙  ∈ ℝ is a tuning 200 
parameter.  201 

 202 

𝐺𝑀 = [
𝐹𝐼⊙𝐹𝐼

(𝐹𝐼⊙𝐹𝐼)+(𝑊𝐼⊙𝑊𝐼)+𝑡𝑜𝑙
] ∈ ℝ𝐷𝑋𝐾…...............................................(7)  203 

𝐺𝑀(𝐺𝑀 > 𝑡𝑜𝑙) = 𝑡𝑜𝑙................................................................................................(8) 204 
 205 
Here 𝐺𝑀  is computed by assuming noisy bands are in the horizontal direction. If noisy 206 
components are in vertical direction, Eq 7 can be written as: 207 

 208 

 𝐺𝑀 = [
𝑊𝐼⊙𝑊𝐼

(𝐹𝐼⊙𝐹𝐼)+(𝑊𝐼⊙𝑊𝐼)+𝑡𝑜𝑙
] ∈ ℝ𝐷𝑋𝐾 209 

 210 

4. Results and Discussion 211 

4.1 Trial-1 212 
 213 

Trial-1 was conducted by allowing gas migration in the annulus without water circulation. The 214 
raw DAS strain rate data of a single time frame (10 seconds) was shown in Fig. 2a. The location 215 
of the gas can be easily identified as there was minimal background noise due to no water 216 
circulation. However, the raw DAS data requires a large amount of storage space. Therefore, 217 
in order to enhance the signature, while reducing the data storage requirement, simple filtering 218 
and averaging techniques (a)−(c) described in Sec. 3, were applied to the DAS data acquired in 219 
Trial-1. A time frame (or frame size) of 10 seconds and gauge length of 4.92 m (fixed in the 220 
interrogator) were used for DAS processing, and the results are shown in Fig. 3. The gas 221 
signature, including the top and bottom of the gas displacing in the annulus at any given time, 222 
are clearly visible using all three methods. As previously mentioned, these techniques not only 223 
improve the signal but also minimize data storage space. For example, in Trial-1, each time 224 
frame of raw DAS strain rate data requires 897 MB of storage space, and Trial-1 has a thousand-225 
time frames, occupying 875 GB. After converting to one of the aforementioned profiles, data 226 
storage space is reduced to 17.2 MB, a substantial decrease in size without significantly 227 
compromising the gas signature quality. 228 

(a) 
(b)  



(c)  

Fig. 3. Processed DAS data for Trial-1 using (a) mean (b) standard deviation (c) RMS. The figures show gas 

injection and gas rise signature including the top and bottom of the moving gas slug region at any given time.   

 229 
Trial-1 data was also used to select the optimum frequency bands for visualizing the gas 230 

signature. The spectral signatures of gas displacement at different time instances for different 231 
depths are plotted in Figs. 4a-4d. The results demonstrate that the spectral signature of gas is 232 
dominant in the 0 to 50 Hz frequency range, as indicated by the high amplitude obtained in the 233 
spectrum plots. However, 10 to 50 Hz was selected as the optimum frequency band to visualize 234 
gas to avoid the DC noise at the lower frequencies. The FBE for the 10 to 50 Hz frequency 235 
band is computed for Trial-1 and shown in Fig. 4e. The gas rise signature, including the top 236 
and bottom of the gas slug region, is clearly observed across the entire wellbore annulus in this 237 
frequency range. Thus, this FBE represents the optimum frequency band corresponding to the 238 
gas displacement in the annulus of the test well. This information will be leveraged for 239 
processing the noisier DAS data acquired in Trials 2 and 3 that involve high fluid circulation 240 
rates.  241 

 242 

(a)  (b)  

(c)  (d)  



(e)  
Fig. 4. (a-d) Spectral signatures of the gas migration in the annulus at different time instances as a function of 

depths. (e) DAS FBE for frequency band 10 to 50 Hz for Trial-1 showing clear gas signature.  

 243 

4.2 Trial-2 244 

The raw DAS strain rate data for Trial-2 was previously shown in Fig. 2b. Since the gas 245 
signature was buried in the background noise generated from the pump and water circulation, 246 
additional signal processing was necessary to optimize gas detection. To this end, techniques 247 
(a) through (d) describe in Sec. 3 were implemented on the DAS data with a time frame (or 248 
frame size) of  10 seconds and gauge length of 4.92 m (fixed in the interrogator). The resulting 249 
mean, standard deviation, RMS, and FBE (10-50 Hz) profiles are shown in Fig. 5. In all the 250 
mentioned profiles, gas migration signature is still buried in the severe pump noise and cannot 251 
be easily identified. Hence, additional signal conditioning needs to be deployed to optimize gas 252 
detection. 253 

 254 

(a)  (b)  



(c)  (d)  

Fig. 5. Processed DAS data for Trial-2 using (a) mean (b) standard deviation (c) RMS (d) FBE.  

As a next step, feature extraction techniques described in (e) through (g) in Sec. 3 were 255 
implemented on the DAS FBE profile. A 2-D FFT filter was used to remove the horizontal and 256 
vertical bands in the FBE, and the resultant signal is shown in Fig. 6a. The top and bottom 257 
edges of the gas slug region can be identified as the two diagonal lines which are highlighted 258 
in Fig. 6, which represent the gas slug migrating up the annulus. GBDIA is deployed on the 259 
FBE as the second technique to filter the horizontal components in the Fourier space and which 260 
are then converted back to the space and time domain. The signature of the gas rise event and 261 
the top and bottom of the gas slug are clearly visible as highlighted in Fig. 6b. The final 262 
technique is computing a gradient of the FBE data with respect to the time axis to filter out the 263 
horizontal bands. The filtered signal is shown in Fig. 6c which clearly shows the top and bottom 264 
ends of the migrating gas slug region. The results indicate that the feature extraction techniques 265 
were successful in removing the background noise and highlighting the gas rise signature. For 266 
the Trial-2 data, GBDIA and gradient filtering seem to outperform the 2D-FFT Filter. However, 267 
this does not imply that 2D-FFT filtering is necessarily inferior to the other two. The 268 
performance of any algorithm largely depends on the signal quality and the feature of interest.   269 

 270 

(a)  



(b)  

(c)  

Fig 6. Filtered DAS FBE data for Trial-2 using (a) 2D-FFT (b) GBDIA (c) higher-order gradient filter. 

 271 

4.3 Trial-3 272 

In Trial-3, a relatively large gas slug volume of 80 bbl was injected at the top of the annulus 273 
and bullheaded down at a rate of 250 gpm. The resulting DAS strain rate data (shown previously 274 
in Fig. 1c) did not clearly display the gas signature due to the high background noise resulting 275 
from continuous fluid circulation. To optimize gas detection, the DAS strain rate data was 276 
processed using mean, standard deviation, RMS, and FBE and the results are displayed in Fig. 277 
7. These profiles were generated using a time frame of 10 seconds and gauge length of 4.9 m. 278 
All the resulting profiles were noisy and only the top of the gas slug is easily visible.  279 

In order to extract the signature corresponding to the bottom of the gas slug, gradient 280 
filtering was deployed as a feature extraction technique on all the profiles shown in Fig. 7. The 281 
gradient-filtered profiles of mean, standard deviation, RMS, and FBE are shown in Fig. 8.  It 282 
can be observed that all the filtered profiles further enhance the top of the gas slug, however 283 
not significantly the bottom edge. A faint bottom edge is visible at shallower depths in Fig. 8a 284 
corresponding to the mean profile. The results necessitated another level of signal conditioning 285 
was needed to enhance the detection of the bottom of the gas slug region. Detection of both the 286 
top and bottom of the gas region is necessary for understanding the changing slug lengths and 287 
the full dynamics of gas displacement to decide the proper well control strategy. Further feature 288 
extraction was implemented on the FBE profile generated at 10-50 Hz frequency range as it 289 



inherently selects the desired frequency bins for optimized gas detection and isolates the 290 
unnecessary frequency components. Gradient filter followed by vertical GBDIA was 291 
implemented on the FBE profile and the result is shown in Fig 9. Here we can identify both the 292 
top and bottom of the gas slug, especially at the deeper depths, relatively more clearly.   293 

The above analysis shows that the effectiveness of the filtering and feature extraction 294 
techniques depends on the signal of interest and also the level of noise present in the data. A 295 
combination of techniques may be needed in some cases to highlight the desired features. All 296 
the proposed signal conditioning techniques are computationally inexpensive and able to 297 
extract the key features for real-time data processing and low-latency visualization of the gas 298 
migration signatures in the wellbore in the presence of high background noise. 299 

(a)  (b)  

(c)

 

(d)

 
Fig 7. Processed DAS data for Trial-3 using: (a) Mean (b) Standard deviation (c) RMS (d) FBE (10-50 Hz).  

 300 

(a) (b) 



(c) (d) 
Fig. 8. Gradient filtered profiles for Trial-3 for the (a) mean (b) standard deviation (c) RMS (d) FBE.  

 301 

 
Fig. 9: Gradient and vertical GBDIA implemented on the DAS FBE for Trial-3.   

 302 

So far, we have discussed the performance of different filtering and feature extraction 303 
techniques.  However, DAS signal quality also depends on the frame size and gauge length of 304 
the acquisition that determine the temporal and spatial resolution of the DAS data, respectively. 305 
The sensitivity of these parameters is demonstrated on the DAS data acquired during Trial-3.  306 
In the first case, the FBE profile corresponding to 10-50 Hz frequency range is computed by 307 
fixing the gauge length at 4.9 m and varying the time frame of the raw DAS strain from 1 s to 308 
30 s. Then the gradient filter is deployed as a feature extraction technique and the results of the 309 
filtered FBE are shown in Fig 10. Here we can observe that if the time frame is very small, the 310 
desired feature does not have enough energy to be contrasted from the background. This can 311 
be observed in Fig. 10a where the time frame of 1 s was used, and the resulting gas feature 312 
cannot be separated from the background even after the implementation of the feature 313 
extraction technique. As the time frame increases, the gas feature is more clearly visible, 314 
however the tradeoff is the contrast of the feature from the background. On the other hand, a 315 
smaller time frame leads to poor sharpness of the feature. Hence an optimum timeframe needs 316 
to be selected to improve the detection of the feature of interest.  317 

The quality of FBEs with different frame rates are also quantified using the perception-318 
based image quality evaluator (PIQE) score [14]. The PIQE score for an input image, in our 319 



case the DAS plots, is returned as a non-negative scalar between 0 and 100. The PIQE score is 320 
the no-reference image quality score. It has an inverse relationship with how good an image 321 
looks to the human eye. High perceptual quality is shown by a low score value, whereas a high 322 
score value implies poor perceptual quality.  In Fig. 12a, the PIQE score is generated for images 323 
of random noise and filtered FBEs with various time frames for comparison. The PIQE scores 324 
indicate that the largest time frame and smallest time frame rates result in poor picture quality 325 
and among the time frames compared, 10 s seems to show the best outcome. 326 

(a) (b) 

(c) (d) 

 Fig. 10. FBE gradient of Trial-3 corresponding to frame size of (a) 1 s (b) 10 s (c) 20 s and (d) 30 s 

 327 
Likewise, the effect of gauge length on the quality of DAS data and the ability to detect gas 328 
signatures was also investigated. Different gauge lengths were selected with respect to the 329 
incident laser pulse width used in the optical interrogator unit. The gradient-filtered FBE for 330 
different gauge lengths are plotted in Fig 11. Visually, we can observe that as the gauge length 331 
increases, the noise in the image appears to reduce, however, it is also fading the desired gas 332 
feature. Again, the quality of the image is quantified using the PIQE score and plotted in Fig. 333 
12b which shows that as gauge length increases, image quality reduces. Based on this 334 
assessment, we can observe that the gauge length corresponding to the incident laser pulse 335 
width gives the best quality of the gas signature in the case we have analyzed.  336 
    Here the PIQE score is presented as one of the many available quantification tools to evaluate 337 
the image quality, which worked satisfactorily for the data presented. However, ultimately the 338 
ability to optimally detect the feature of interest will depend on the signal being monitored. 339 
Therefore, a single quantification parameter (such as PIQE) may not meet the needs of all 340 
applications for measuring signal quality.   341 
 342 



(a) (b) 

(c) (d) 

Fig. 11. Gradient of FBE for gauge length equal to the (a) incident pulse width (b)3X (c)6X and (d)9X pulse 

width.  

 343 

(a) (b) 
Fig. 12. PIQE score as a function of (a) time frame (b) gauge length. 

4. Conclusions 344 
This study demonstrates the application of optical fiber-based DAS for monitoring gas 345 
signature in a 5163 ft-deep wellbore. A suite of computationally inexpensive signal processing 346 
techniques were implemented on the DAS datasets acquired during multiphase flow 347 
experiments to optimize the detection of gas slug in the well in real time, with low latency. The 348 
proposed denoising techniques include both simple approaches, such as mean, standard 349 
deviation, RMS, and FBE estimation, as well as more involved filtering and signal conditioning 350 
using 2D-FFT filtering, GBDIA, and higher-order gradients. One or more of these methods can 351 
be implemented depending on the level of noise present in the data.  The proposed techniques 352 



not only helped to enhance the gas signal but also reduced the DAS data size which can further 353 
help in optimizing the data storage and archival needs. The selection of the optimum frequency 354 
range corresponding to the gas rise signature using DAS spectrums is presented. The proposed 355 
techniques were able to extract the top and bottom edges of the gas slug feature in the wellbore 356 
despite the high noise present due to the fluid circulation and pumping. This work also discusses 357 
the effect of DAS acquisition parameters, such as the frame size and gauge length, on the 358 
visibility of the feature of interest.  359 
 360 
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