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Laser gyros are powerful tools to test the predictions of the general theory of relativity. The precision of a
measurement of the rotation rate with a laser gyro is limited by the frequency noise of the beat between
two counterpropagating modes of a ring laser. The frequency noise of a single mode of a laser is limited
by quantum mechanical constraints because it is related to the maximum precision with which the phase
of a coherent state can be measured. If two modes are uncorrelated, the variance of the fluctuations of
the difference of the their frequencies is the sum of the variance of the frequency noise of the two modes.
If two modes are correlated, this result does not hold any longer. In this paper, we show that there are
mechanisms in a laser gyro that are capable to dynamically lock the two modes together without forcing
the two modes to the same frequency. The lock of modes decouples the noise of the beat note from the
frequency noise of the individual modes, and allows the realization of sub-shot noise laser gyros. These
mechanism may explain the recent observation of sub-shot noise performance of the GINGERino laser
gyro recently reported in the literature [1].

http://dx.doi.org/10.1364/ao.XX.XXXXXX

Laser gyros are a powerful tool to test general relativity pre-1

dictions [2–4]. They enable a precise measurement of the rotation2

rate by measuring the beat of two counterpropagating modes of3

a ring laser. The basic idea is that rotation breaks the symmetry4

between conterpropagating modes, and the frequency difference5

between the two modes is proportional to the rotation rate of6

the laser gyro. The precision of the measurement depends on7

the frequency stability of the beat note obtained by detecting the8

intensity of a coherent combination of the two modes. If the two9

modes are independent and of equal power, the variance of the10

frequency noise of the beat is twice the variance of the frequency11

noise of each individual mode [5–8]. The frequency noise of12

each individual mode originates from constraints dictated by13

quantum mechanics and in particular from the precision of a14

measurement of the phase of a coherent state [5]. The physical15

mechanisms that make the laser radiation compliant with these16

constraints come for one half from the quantum noise of the17

active medium and the other half from the vacuum fluctuations18

entering from the output port of the laser [9]. Such noise sources19

are responsible for the phase and frequency noise of the laser,20

and for the non-zero linewidth of the emitted radiation.21

In this paper, we show that a under proper conditions, the22

two counterpropagating modes of a laser gyro can lock together23

while still maintaining a different frequency. When these con-24

ditions are fulfilled, the noise of the frequency of the beat note25

decouples to the noise of the individual modes. This result26

can be understood by the analogy with mode-locked lasers. In27

passively mode-locked lasers, the locking mechanism is asso-28

ciated to pulsed operation. The linewidth of the single line of29

the spectrum of the emitted radiation is Lorentzian but the fre-30

quency fluctuations are strongly correlated, to the extent that31

the spectral purity of the beat note between the spectral lines of32

the emitted frequency comb [10] has been exploited for the real-33

ization of very accurate clockworks [11]. In ring lasers, locking34

of counterpropagating modes is the result of reflections. When35

reflections occur from static cavity elements like cavity mirrors,36

the two modes locks at the same frequency. When reflections37

occurs from the slowly moving grating generated, in a nonlinear38

medium with slow response, by the beat of the two counterprop-39

agating modes themselves, they tend to stabilize the difference40

frequency of the two modes. We speculate that this mechanism41

is at work in the best performing laser gyros operating around42

the world, when spurious reflections from static cavity elements43

are minimized, and that may in particular explain the observa-44

tion of sub-shot noise performance of the GINGERino laser gyro45

that recently appeared in the literature [1, 12, 13].46

One may use these results for investigating the possibility of47

alternate laser design where a slow saturable absorber is inserted48

in the laser cavity to stabilize the mode beat. Our findings pave49

the way for the realization of sub-shot noise laser gyros of un-50

precedented accuracy for ultra-precise testing of the predictions51

of general relativity.52

1. SINGLE MODE CASE53

Following the analysis of Yamamoto and Haus [9], let us con-54

sider first a single mode of an empty cavity a(t) with bosonic55
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commutation relations56

[a(t), a†(t)] = 1, (1)

coupled to an outside optical wave sa(t) with commutation rela-57

tions58

[sa(t), s†
a(t

′)] = δ(t − t′). (2)

The wave reflected from the cavity is given by [9, 14]59

ra(t) = −sa(t) +
√

γa(t). (3)

The temporal evolution of the mode a(t) is described by the60

differential equation61

da(t)
dt

= −γ

2
a(t) +

√
γ sa(t). (4)

Assuming that the outside wave is incident upon the cavity from62

a time much longer than 1/γ solution of Eq. (3) is63

a(t) =
√

γ
∫ t

−∞
du exp

[
−γ

2
(t − u)

]
sa(u), (5)

so that the two-time commutation relations of ra(t) are64

[a(t), a†(t′)] = γ exp
[
−γ

2
(t + t′)

] ∫ t

−∞
du

∫ t′

−∞
du′

exp
[γ

2
(u + u′)

]
[sa(u), s†

a(u
′)], (6)

that is65

[a(t), a†(t′)] = exp
(
−γ

2
|t − t′|

)
. (7)

consistent with the bosonic commutation rule (1) for t = t′.66

The commutation relations of the reflected wave ra(t) are67

[ra(t), r†
a(t

′)] = [sa(t), s†
a(t

′)] + γ[a(t), a†(t′)]

−√
γ
(
[a(t), s†

a(t
′)] + [sa(t), a†(t′)]

)
. (8)

Being68

[a(t), s†
a(t

′)] =
√

γ
∫ t

−∞
du exp

[
−γ

2
(t − u)

]
[sa(u), s†

a(t
′)], (9)

that is69

[a(t), s†
a(t

′)] = exp
[
−γ

2
(t − t′)

]
u(t − t′), (10)

and also70

[sa(t), a†(t′)] = exp
[
−γ

2
(t′ − t)

]
u(t′ − t), (11)

where u(t) = 1 for t > 0, u(t) = 0 for t < 0 and u(0) = 1/2, so71

that we obtain72

[ra(t), r†
a(t

′)] = [sa(t), s†
a(t)], (12)

and hence that the commutation relation of the output optical73

wave are the same of the input wave, as it should be.74

Let us now assume that a gain medium is inserted into the75

cavity (see Fig. 1), which we represent as a statistical mixture of76

N two-level atoms. Let us define the operators77

σ− =
N

∑
i=1

1
N
(|1⟩⟨2|)i, (13)

where |1⟩ and |2⟩ are the two levels, and78

σ3 =
N

∑
i=1

1
N
(|2⟩⟨2| − |1⟩⟨1|)i. (14)
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Fig. 1. Representation of the laser cavity. The front mirror is a
partially reflecting mirror with power reflectivity R such that
γ = (1 − R)/τrt where τrt is the cavity roundtrip time, whereas
the backward mirror is fully reflecting.

It is easy to show that σ− and σ3 obey the commutation relations79

[σ−, σ†
−] = −σ3

N
. (15)

and the anti-commutation80

{σ−, σ†
−} =

1
N

. (16)

The spontaneous decay of σ3 is described by81

dσ−(t)
dt

= −Γσ−(t) +
(

2Γ
N

)1/2
s(−)(t), (17)

where a noise source s(−)(t) with commutation relation82

[s(−)(t), s(−)†(t′)] = −σ3(t) δ(t − t′), (18)

and anti-commutation83

{s(−)(t), s(−)†(t′)} = δ(t − t′), (19)

is required to preserve the commutation and anti-commutation84

relations, as it may be verified for the commutator (and simi-85

larly for the anti-commutator) by calculating d[σ3(t), σ†
3(t)] and86

using that87

[s(−)(t)dt, s(−)†(t)dt] = −σ3(t)dt. (20)

Being σ−(t)2 = 0 we also have s(−)(t)2 = s(−)†(t)2 = 0, and88

this completes the characterization of the noise operator. If the89

active medium is placed into the cavity that we described above,90

the coupling with the cavity mode is described by the equation91

for a(t)92

da(t)
dt

= −γ

2
a(t)− igNσ−(t) +

√
γ sa(t), (21)

and by the equation for σ−93

dσ−(t)
dt

= −Γσ−(t) + igσ3(t)a(t) +
(

2Γ
N

)1/2
s(−)(t). (22)

In the presence of optical pumping with pumping rate R, the94

equation for the population inversion n(t) = Nσ3(t) is95

dn(t)
dt

= R − n
τ
+ i2gN

[
a†(t)σ−(t)− σ†

−(t)a(t)
]

, (23)
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where τ is the spontaneous carrier lifetime.96

Assuming Γ ≫ 1/τ, we may neglect in Eq. (22) dσ−(t)/dt97

compared to −Γσ−(t). This procedure yields98

σ−(t) = i
g

NΓ
n(t)a(t) +

(
2

NΓ

)1/2
s(−)(t), (24)

and this identity once inserted into the equation for n(t) permits99

to adiabatically eliminate σ−(t) in Eqs. (21) and (23), which100

become101

da(t)
dt

=

[
−γ

2
+

g2

Γ
n(t)

]
a(t)− ig

(
2N
Γ

)1/2
s(−)(t)+

√
γ sa(t),

(25)102

dn(t)
dt

= R − n(t)
τ

− 4g2

Γ
n(t) a†(t)a(t)

+i2g
(

2N
Γ

)1/2 [
a†(t)s(−)(t)− s(−)†(t)a(t)

]
, (26)

The commutation relations of the noise term in Eq. (25)103

Sa(t) = −ig
(

2N
Γ

)1/2
s(−)(t) +

√
γ sa(t) (27)

is104

[Sa(t), S†
a(t

′)] = 2
(

γ

2
− g2

Γ
n
)

δ(t − t′). (28)

Using105

d[a(t), a†(t)] = [da(t), a†(t)] + [a(t), da†(t)] + [da(t), da†(t)],
(29)

and106

[da(t), da†(t)] = [Sa(t)dt, S†
a(t)dt] = 2

[
γ

2
− g2

Γ
n(t)

]
dt, (30)

we may show that the commutation relations (28) imply107

d[a(t), a†(t)] = 0, thus ensuring the preservation of the com-108

mutation relations for a(t) also in the presence of the interaction109

with the gain medium.110

Let us now linearize Eqs. (25) and (26) around the steady111

state by setting112

a(t) = a0 + δa(t), (31)

n(t) = n0 + δn(t), (32)

with a0 and b0 c-numbers. The commutation relations for δa(t)113

are equal to the commutation relations for a(t). The steady state114

value of the population inversion is115

n0 =
γΓ
2g2 , (33)

so that linearization of Eqs. (25) and (26) yields116

dδa(t)
dt

=
g2

Γ
a0δn(t)− ig

(
2N
Γ

)1/2
s(−)(t) +

√
γ sa(t), (34)

117

dδn(t)
dt

= − δn(t)
τ

− 4g2

Γ
a2

0δn(t)

−4g2

Γ
n0a0

[
δa(t) + δa†(t)

]
+i2g

(
2N
Γ

)1/2
a0

[
s(−)(t)− s(−)†(t)

]
. (35)

where we assumed a0 as real implying the definition of a phase118

reference for the field.119

Adiabatic elimination of the population inversion in the high120

gain regime in which 1/τ ≪ 4g2a2
0/Γ gives121

δn(t) = −n0
a0

[
δa(t) + δa†(t)

]
+i

Γ
2g

(
2N
Γ

)1/2 1
a0

[
s(−)(t)− s(−)†(t)

]
. (36)

This equation, inserted into Eq. (34) gives122

dδa(t)
dt

= −γ
δa(t) + δa†(t)

2
+
√

γ sa(t)

−ig
(

2N
Γ

)1/2 s(−)(t) + s(−)†(t)
2

. (37)

With strong pumping, the medium is fully inverted so that n0 ≃123

N so that, using Eq. (33) we obtain γ = 2n0g2/Γ ≃ 2Ng2/Γ and124

therefore125

dδa(t)
dt

= −γ
δa(t) + δa†(t)

2
+
√

γ sa(t)

−i
√

γ
s(−)(t) + s(−)†(t)

2
. (38)

The equations for the in-phase component δa1(t) = [δa(t) +126

δa†(t)]/2 and the in-quadrature component δa2(t) = [δa(t)−127

δa†(t)]/(2i) are128

dδa1(t)
dt

= −γδa1(t) +
√

γ sa,1(t), (39)

and129

dδa2(t)
dt

=
√

γ
[
s2(t)− s(−)

1 (t)
]

, (40)

where s(−)
1 (t) = [s(−)(t) + s(−)†(t)]/2, s(−)

2 (t) = [s(−)(t) −130

s(−)†(t)]/(2i), sa,1(t) = [sa(t) + s†
a(t)]/2, and sa,2(t) = [sa(t)−131

s†
a(t)]/(2i).132

Solving in the Fourier domain the equation for the in-phase133

component (39) we obtain134

δa1(ω) =

√
γ sa,1(ω)

−iω + γ
, (41)

which inserted into the equation for the fluctuations of ra,1(ω)135

given by Eq. (3) yields136

δra,1(ω) =
iωγ

−iω + γ
sa,1(ω). (42)

For ω ≪ γ we have δra,1(ω) ≃ 0 [9, 14], whereas for ω ≫ γ we137

have δra,1(ω) = −sa,1(ω), so that in this regime the incoming138

vacuum fluctuations are reflected from the cavity with a π phase139

shift, producing a coherent state at output.140

Using Eq. (18), and being ⟨σ3⟩ = 1 for full inversion, we141

obtain142

⟨s(−)
i (t)s(−)

i (t′)⟩ = 1
4

δ(t − t′), i = 1, 2, (43)

and using Eq. (3)143

⟨si(t)si(t′)⟩ =
1
4

δ(t − t′), i = 1, 2. (44)
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Equation (40) shows that the diffusion coefficient for the in-144

quadrature fluctuations is equal to γ/2, so that the diffusion145

coefficient for the phase fluctuations, defined as146

∆φ =
δa2(t)

a0
, (45)

is147

Dφ =
γ

2a2
0

. (46)

so that the laser line-width is148

∆ν =
Dφ

2π
=

γ

4πa2
0

. (47)

If we use the expression for the output power of the laser P =149

γa2
0h̄ω0, we obtain the well-known Schawlow-Townes linewidth150

formula151

∆ν =
γ2h̄ω0
4πP

. (48)

The uncertainty of a frequency measurement over a time T is152

ωmeasT = ω0T + ∆φ(t + T)− ∆φ(t), (49)

so that, using ⟨[∆φ(t + T)− ∆φ(t)]2⟩ = DφT we obtain153

∆ω2
meas =

⟨[∆φ(t + T)− ∆φ(t)]2⟩
T2 =

γ

2a2
0T

, (50)

where we defined the uncertainty of the frequency measurement154

as ∆ωmeas = (⟨∆ωmeas⟩2)1/2. Equation (50) can be interpreted155

in simple physical terms. The variance of a phase measure-156

ment on a coherent state of amplitude a0 is ∆φ2
coh = 1/(4a2

0).157

Nyquist criterion states that the number of independent mea-158

surements that can be performed over a time T on a signal of159

correlation time 1/γ (see Eq. (42)) is Nmeas = (2T)/(1/γ), so160

that the variance of the frequency measurement is ∆ω2
coh =161

(∆φ2
coh/T2)/Nmeas, which returns Eq. (50) [5].162

Using in Eq. (50), the relation that links a2
0 to the output163

power of the laser P, namely a2
0 = P/(γh̄ω0), we obtain the164

expression165

∆ωmeas =
ω0
Q

√
h̄ω0
2PT

, (51)

where we defined the cavity quality factor as Q = ω0/γ.166

2. THE LASER GYRO: A TWO-MODE CASE167

While the laser linewidth and the precision of a measurement of168

the frequency of a single laser mode are prone to strong quantum169

mechanical constraints, the frequency difference of two modes170

are not. Of course, if two modes are independent the variance171

of the fluctuations of the difference frequency is the sum of172

the variances of the individual modes. Different is the case173

of correlated modes. The case of the beat of two modes of a174

mode-locked laser is an example where the beat of two modes175

has a precision orders of magnitude larger than the precision176

of each individual mode frequency [10]. This property enables177

the transfer down to microwave frequencies of extremely stable178

optical oscillations and vice versa [11]. It is therefore worth179

investigating whether there are any locking mechanisms active180

(or can be induced by a suitable design) in laser gyros.181

Let us consider a ring laser with two counterpropagating182

modes (see Fig. 2), one forward propagating centered a fre-183

quency ω0 + Ω0/2184

da(t)
dt

= −i
Ω0
2

a(t)− γ

2
a(t)− igN[σ−(t)]a +

√
γ sa(t), (52)

!!
"!!"
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Fig. 2. Representation of the ring laser cavity. The front mirror
is a partially reflecting mirror with power reflectivity R such
that γ = (1 − R)/τrt where τrt is the cavity roundtrip time,
whereas other two mirrors are fully reflecting.

and the other backward propagating centered at frequency ω0 −185

Ω0/2186

db(t)
dt

= i
Ω0
2

b(t)− γ

2
b(t)− igN[σ−(t)]b +

√
γ sb(t). (53)

Here [σ−(t)]a and [σ−(t)]b are the (suitably normalized) spa-187

tial Fourier components of σ− proportional to exp(ikz) and188

exp(−ikz) that couple with the forward and backward propa-189

gating waves. The equation for σ− becomes190

dσ−(t)
dt

= −Γσ−(t) + igσ3(t)(a(t) + b(t)) +
(

2Γ
N

)1/2
s(−)(t).

(54)
In the presence of optical pumping with pumping rate R, the191

equation for the population inversion n(t) = Nσ3(t) is192

dn(t)
dt

= R − n
τ
+ i2gN

[
(a†(t) + b†(t))σ−(t)

−σ†
−(t)(a(t) + b(t))

]
. (55)

where τ is the spontaneous lifetime.193

Adiabatic elimination of σ−(t) in Eq. (54) gives194

σ−(t) = i
g

NΓ
n(t)(a(t) + b(t)) +

(
2

NΓ

)1/2
s(−)(t), (56)

that is, the expected linear dependence of the medium polariza-195

tion on the optical field. Inserting Eq. (56) into Eqs. (52) and (53)196

and projecting σ−(t) over the two counterpropagating modes197

gives198

da(t)
dt

= −i
Ω0
2

a(t) +
[
−γ

2
+

g2

Γ
n(t)

]
a(t)

−ig
(

2N
Γ

)1/2
s(−)

a (t) +
√

γ sa(t), (57)
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db(t)
dt

= i
Ω0
2

b(t) +
[
−γ

2
+

g2

Γ
n(t)

]
b(t)

−ig
(

2N
Γ

)1/2
s(−)

b (t) +
√

γ sb(t). (58)

Here s(−)
a,b (t) are the result of the projection of the noise term200

s(−)(t) over the spatial mode profile exp(ikz) and exp(−ikz).201

Local multiplication by exp(±ikz) generates two independent202

noise terms with the same commutation properties of s(−)(t). As203

a check, it may be verified that, if s(−)
a,b (t) obey the commutation204

rule (18), Eqs. (57) and (58) preserve the bosonic commutation205

rules of the two modes. Entering Eq. (56) into Eq. (55) and206

expanding the product of the mode amplitudes yields207

dn(t)
dt

= R − n(t)
τ

− 4g2

Γ
n(t)

[
a†(t)a(t) + b†(t)b(t)

+a†(t)b(t) + b†(t)a(t)
]

+i2g
(

2N
Γ

)1/2 [
(a†(t) + b†(t))s(−)(t)

−s(−)†(t)(a(t) + b(t))
]
. (59)

Being Ω ≪ 1/τ, we may assume that n(t) adiabatically follows208

the modulation frequency, so that the steady state of n is209

n(t) =
R

1/τ + (4g2/Γ)
(
|a0|2 + |b0|2 + a∗0b0eiΩ0t + a0b∗0 e−iΩ0t

)
(60)

The the terms a∗0b0 and a0b∗0 account for a gain grating that is210

generated by the beat of the two counterpropagating modes over211

the gain medium. The nature of this grating may be understood212

by considering that the two counterpropagating modes collide213

over the active medium and generate the intensity pattern214

I(z, t) = |A exp(−iΩ0t/2 + ikz) + B exp(iΩ0t/2 − ikz)|2, (61)

where A and B are the amplitudes of the forward and back-215

ward propagating modes at the position of the gain medium.216

Expanding the expression of the intensity, we obtain217

I(z, t) = |A|2 + |B|2 + AB∗ exp(−iΩ0t + 2ikz)
+A∗B exp(iΩ0t − 2ikz). (62)

The grating moves at the speed Ω0/(2k) = ( f1 − f2)λ/2, in the218

GINGERino case [15, 16] about 89 microns per second.219

In a gas laser, the amplitude of the grating tends to be attenu-220

ated by diffusion, so that we may expand to first order the above221

expression222

n(t) = n0

[
1 − ξ

a∗0b0eiΩ0t + a0b∗0 e−iΩ0t

1/τ + (4g2/Γ) (|a0|2 + |b0|2)

]
(63)

where223

n0 =
R

1/τ + (4g2/Γ) (|a0|2 + |b0|2)
, (64)

and where ξ < 1 is a factor accounting for the reduction of the224

grating amplitude caused by diffusion of the active atoms.225

Similarly to the single mode case, the phase fluctuations are226

independent of the fluctuations of the carrier, so that n(t) can be227

replaced by its steady state value n0228

da(t)
dt

= −i
Ω0
2

a(t) + κgb(t)e−iΩ0t +

(
−γ

2
+

g2

Γ
n0

)
a(t)

−i
√

γ s(−)
a (t) +

√
γ sa(t), (65)

229

db(t)
dt

= i
Ω0
2

b(t) + κ∗ga(t)eiΩ0t +

(
−γ

2
+

g2

Γ
n0

)
b(t)

−i
√

γ s(−)
b (t) +

√
γ sb(t). (66)

where we used γ = 2g2n0/Γ and assumed full inversion so that230

N ≃ n0, and we defined231

κg = − g2n0
Γ

ξ a0b∗0
1/τ + (4g2/Γ) (|a0|2 + |b0|2)

. (67)

The term κg, proportional to a0b∗0 couples the backward prop-232

agating mode to the forward propagating mode, because the233

spatial modulation proportional to exp(2ikz) promotes phase234

matching between the backward propagating wave, with spa-235

tial dependence exp(−ikz), and the forward propagating wave,236

with spatial dependence exp(ikz). By a similar mechanism, the237

term κ∗g , proportional to a∗0b0 couples the forward propagating238

mode to the backward propagating mode.239

Reflections may also occur from various optical elements in240

the optical cavity, primarily from cavity mirrors. In this case,241

however, reflections do not change the frequency of the field. In-242

cluding this process into Eqs. (65) and (66) by an extra backscat-243

tering coefficient κm, they become244

da(t)
dt

= −i
Ω0
2

a(t) +
(

κge−iΩ0t + κm

)
b(t)

+

(
−γ

2
+

g2

Γ
n0

)
a(t)− i

√
γ s(−)

a (t) +
√

γ sa(t), (68)

245

db(t)
dt

= i
Ω0
2

b(t) +
(

κ∗geiΩ0t + κ∗m
)

a(t)

+

(
−γ

2
+

g2

Γ
n0

)
b(t)− i

√
γ s(−)

b (t) +
√

γ sb(t). (69)

These equations are linear in the fields. So, a meaningful anal-246

ysis can be performed assuming classical fields, with noise247

sources whose strength are dictated by quantum mechanics.248

Considering only the deterministic part, and defining ∆g =249

−γ + 2g2n0/Γ, a0 = |a0| exp(iφa), b0 = |b0| exp(iφb), κg =250

|κg| exp(iφg) and κg = |κm| exp(iφm) we obtain251

dφa

dt
= −Ω0

2
+

|b0|
|a0|

[
|κg| sin(φb − φa + φg − Ω0t)

+|κm| sin(φb − φa + φm)
]
, (70)

dφb
dt

=
Ω0
2

− |a0|
|b0|

[
|κg| sin(φb − φa + φg − Ω0t)

+|κm| sin(φb − φa + φm)
]
. (71)

We also have252

d|a0|
dt

=
∆g
2
|a0|+ |b0|

[
|κg| cos(φb − φa + φg − Ω0t)

+|κm| cos(φb − φa + φm)
]
, (72)

d|b0|
dt

=
∆g
2
|b0|+ |a0|

[
|κg| cos(φb − φa + φg − Ω0t)

+|κm| cos(φb − φa + φm)
]
. (73)

These equations admit stable stationary solutions when either253

|κg| or |κm| is predominant, so that the other can be neglected.254

Let us consider these two cases separately.255
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A. Scattering due to mirrors is predominant256

This case corresponds to κg = 0. In this case, defining ∆φ =257

φa − φb − φm we obtain258

d∆φ

dt
= Ω0 − |κm|

(
|b0|
|a0|

+
|a0|
|b0|

)
sin(∆φ). (74)

and also259

d|a0|
dt

=
∆g
2
|a0|+ |κm||b0| cos(∆φ), (75)

d|b0|
dt

=
∆g
2
|b0|+ |κm||a0| cos(∆φ). (76)

Of course, if |κm| is negligible ∆φ = Ω0t. However, two steady260

state solutions with a time-independent value of ∆φ exist if261

Ω0 ≤ 2|κm|. This steady state corresponds to two counterpropa-262

gating modes with the same frequency and locked phase, and is263

achieved for |a0| = |b0|, ∆g = −2|κm| cos(∆φ) and for values of264

Ω0 such that265

Ω0 = 2|κm| sin(∆φ). (77)

Of the two solutions, only that with ∆g = −2|κm| cos(∆φ) < 0266

is stable. The maximum value of Ω0 compatible with this steady267

state solution is Ωlock−in = 2|κm|.268

Locking at a zero difference frequency should be avoided in269

the proper operation of a laser gyro. The value of |κm| can be270

estimated from the frequency flock−in = Ωlock−in/(2π) reported271

for operating laser gyros in Table II of ref. [4], which ranges from272

8 to 240 mHz.273

When the locking condition is established, then the two274

modes of equal frequency produce in the gain medium a static275

standing grating, and the reflection from this grating further276

stabilize the locking state. The effect in a laser gyro of reflections277

from a standing gain and index grating was described in [2].278

B. Scattering due to gain is predominant279

This case corresponds to set κm = 0 in Eqs. (68) and (69), and is280

more conveniently studied by frequency shifting a(t) by −Ω0/2281

and a(t) by Ω0/2 by282

a′(t) = a(t) exp(iΩ0t/2), (78)

b′(t) = b(t) exp(−iΩ0t/2), (79)

so that the transformed field a′(t) is centered at frequency ω0 −283

Ω0/2 and b′(t) around ω0 + Ω0/2. The new fields obey the284

following equations:285

da′(t)
dt

= κgb′(t) +
[
−γ

2
+

g2

Γ
n(t)

]
a′(t)

+
[
−i

√
γ s(−)

a (t) +
√

γ sa(t)
]

eiΩ0t/2, (80)
286

db′(t)
dt

= κ∗ga′(t) +
[
−γ

2
+

g2

Γ
n(t)

]
b′(t)

+
[
−i

√
γ s(−)

b (t) +
√

γ sb(t)
]

e−iΩ0t/2. (81)

The transformations (78) and (79) allow us to define independent287

phase references for the two modes. Defining ∆φ′ = φ′
a − φ′

b −288

φg, where φ′
a and −φ′

b are the phases of the frequency shifted289

fields, corresponding to ∆φ′ = φa − φb − φg + Ω0t in terms of290

the phases of the original fields, we obtain291

d∆φ′

dt
= −|κg|

(
|b0|
|a0|

+
|a0|
|b0|

)
sin(∆φ′). (82)

and also292

d|a0|
dt

=
∆g
2
|a0|+ |κg||b0| cos(∆φ), (83)

d|b0|
dt

=
∆g
2
|b0|+ |κg||a0| cos(∆φ). (84)

Steady state is achieved for |a0| = |b0|, ∆g = −2|κg| cos(∆φ)293

and for values of ∆φ = 0 and ∆φ = π. Of the two solutions, only294

∆φ = 0 is stable because ∆g = −2|κg| cos(∆φ) < 0. This con-295

dition correspond to a locking of the two modes at a difference296

frequency Ω0.297

Linearization of Eq. (82) about the steady state ∆φ′ = 0 (and298

removing the prime for simplicity of notation) gives299

d∆φ

dt
= −2|κ|∆φ. (85)

This equation can be extended to the quantum domain defining300

∆φ = δa′2/a0 − δb′2/b0 and adding the proper noise terms as301

d∆φ

dt
= −2|κ|∆φ+ s∆φ, (86)

where302

s∆φ =

√
γ

a0

[
s(−)

a,2 (t) + sa,1(t)
]

eiΩ0t/2

−
√

γ

b0

[
s(−)

b,2 (t) + sb,1(t)
]

e−iΩ0t/2. (87)

The frequency shift of the two independent white noise terms303

in the two lines of Eq. (87) has no effect on their statistical304

properties, and can be neglected. Solution of Eq. (87) shows305

that ∆φ has a Lorentzian spectrum. The phase noise ∆φ is a306

stationary process with power spectrum307

W∆φ(ω) =
γ2h̄ω0

P(ω2 + 4|κg|2)
, (88)

corresponding to the following auto-correlation function of the308

phase fluctuations309

⟨∆φ(t + τ)∆φ(t)⟩ = γ2h̄ω0
4P|κg|

exp
(
−2|κg||τ|

)
. (89)

Here, we assumed once again full inversion ⟨σ3⟩ = 1. The power310

spectrum of the (angular) frequency fluctuations is therefore311

W∆ωmeas (ω) =
γ2h̄ω0

P
ω2

ω2 + 4|κg|2
. (90)

The uncertainty of a frequency measurement performed over a312

time T is313

ωmeasT = ω0T + ∆φ(t + T)− ∆φ(t), (91)

so that, using that ⟨∆φ2⟩ = 2⟨φ(t)⟩ − 2⟨∆φ(t + T)∆φ(t)⟩, the314

uncertainty in a frequency measurement defined like in Eq. (50),315

is316

∆ω2
meas =

γ2h̄ω0

2PT2|κg|
[
1 − exp

(
−2|κg|T

)]
, (92)

that is, using γ = ω0/Q,317

∆ωmeas =
ω0
Q

√√√√ h̄ω0
PT

[
1 − exp

(
−2|κg|T

)
2|κg|T

]
. (93)
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In the limit |κg|T → 0 we obtain318

∆ωmeas =
ω0
Q

√
h̄ω0
PT

, |κg|T → 0, (94)

that is, the known result for independent modes and
√

2 times319

bigger than the frequency uncertainty of a single mode given by320

Eq. (51) [5], whereas for |κg|T ≫ 1 we have321

∆ωmeas =
ω0
QT

√
h̄ω0

2P|κg|
, |κg|T ≫ 1. (95)

The Allan variance can be easily calculated from the autocorrela-322

tion function as323

σ2
T =

γ2h̄ω0

4P|κg|T2

[
3 − 4 exp

(
−2|κg|T

)
+ exp

(
−4|κg|T

)]
. (96)

For |κg|T → 0 we obtain the Allan variance for unlocked modes,324

corresponding to white frequency noise325

σ2
T =

γ2h̄ω0
PT

, |κg|T → 0, (97)

whereas for |κg|T ≫ 1 the Allan variance of white phase noise326

σ2
T =

3γ2h̄ω0

4P|κg|T2 , |κg|T ≫ 1. (98)

3. CONCLUSIONS327

In the absence of locking, the two modes fluctuate independently328

and their phase difference undertakes free diffusion. The effect329

of the gain grating is to lock the relative phase of the two modes.330

While free diffusion of the individual modes is not affected, the331

relative phase diffusion is suppressed. Mathematically, this is332

the result of the appearance of a restoring force in the dynamical333

equation for the phase difference. This effectively suppresses334

the effect of the quantum noise on the phase difference between335

the two modes, stabilizing the difference frequency of the laser336

gyro.337

This scenario is very similar to the mode-locked laser case338

[10], where the linewidths of the individual lines of the fre-339

quency comb have a Lorentzian shape with the Schawlow-340

Townes linewidth corresponding to the total intracavity power,341

whereas the linewidth of the beat is delta-like if repetition rate of342

the laser is locked to an external microwave source by a feedback343

loop acting upon the cavity length [10]. This property is used in344

the realization of clockworks based on optical transitions using345

phase stabilized mode-locked lasers [11].346

In a conventional laser, the mode spacing is determined by347

the cavity geometry, namely by the roundtrip time. In a laser348

gyro, the spacing between the two couterpropagating modes is349

determined by the cavity geometry and by the rotation rate of350

the gyro, which produces an effective roundtrip time difference351

between the two modes. In the absence of locking, in both cases,352

the instantaneous frequency difference between two modes is353

affected by the independent phase diffusion of the two modes.354

The modes of a laser may lock together when the locked con-355

figuration requires lower energy than the unlocked one. This356

is the case of passively mode-locked lasers, where the locked357

configuration corresponds to a pulsed operation, with pulses358

energetically preferred because of the presence of a saturable359

absorbing action within the laser cavity. In the case of a laser360

gyro where reflection from a dynamical gain (or index) grating361

occurs, the configuration in which the two modes are locked re-362

quires less gain because of the constructive interference with the363

component of the opposite propagating mode reflected from the364

gain grating. In the case of mode-locked lasers, the mode beat365

has a residual linewidth because frequency noise, also originated366

by the spontaneous emission and hence of quantum origin, cou-367

ples to the pulse timing via the intracavity dispersion, inducing368

a timing jitter that perturbs the ideal periodicity of the pulse369

train [10]. If timing jitter is controlled, like in the case of active370

mode locking, the individual lines of the frequency comb have a371

linewidth that depends on the stability of the intracavity optical372

modulator.373

In laser gyros where spurious reflections from the mirrors374

are minimized, dynamic locking of the two counterpropagat-375

ing modes is caused by a dynamic gain grating that control the376

fast fluctuations induced by the spontaneous emission. Like in377

passively mode-locked lasers, the locking does not prevent the378

possibility that the mode beat follows the dynamic change of the379

mode spacing, if this change occurs over a time scale longer than380

the lifetime of the grating, which is related to the excited state381

lifetime of the active medium. The locking mechanism may be re-382

sponsible for the recently observed sub-shot-noise performance383

of the GINGERino laser gyro [1, 12, 13]. We may speculate that384

locking of non-degenerate modes may also be stabilized by a385

suitable design of the laser, adding for instance a slow saturable386

absorber into the laser cavity, or by a feedback loop with a long387

integration time acting upon the cavity roundtrip time to sta-388

bilize the beat frequency between the two counterpropagating389

modes.390
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Supplementary material: Frequency noise of laser gyros
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This note provides additional information to supplement the study of Ref. [1]. Specifically, it presents
a comprehensive derivation of the power spectra for the amplitude and phase fluctuations of the output
radiation emitted by the two counter-propagating modes of a laser gyro in the phase-locked regime. The
derivation involves solving the linearized equations for the quantum operators that describe the laser
dynamics, supplemented with the appropriate quantum noise terms.

http://dx.doi.org/10.1364/ao.XX.XXXXXX

In this note, we give a detailed derivation of the results of1

[1], by solving the linearized equations describing the two coun-2

terpropagating modes for the operators that characterize the3

laser dynamics, which include the noise operators required to4

preserve the commutation relations. We will consider only the5

situation in which locking is caused by the coupling induced6

by the back-reflection from the gain medium and occurs with a7

difference frequency Ω0 between the two modes. We will give8

the expression for the spectra of the phase and the amplitude of9

the two modes and of their correlations when the laser operates10

in this regime.11

We will use the annihilation operators a(t) and b(t) to rep-12

resent the amplitudes of the two modes centered at frequency13

ω0 − Ω0/2 and ω0 + Ω0/2, where ω0 is the optical frequency.14

These modes correspond to the primed operators a′(t) and b′(t)15

used in the main text. In addition, we redefine sa(t)eiΩ0t/2 7→16

sa(t), sb(t)e−iΩ0t/2 7→ sb(t), s(−)
a (t)eiΩ0t/2 7→ s(−)

a (t) and17

s(−)
b (t)e−iΩ0t/2 7→ s(−)

b (t), with the new noise terms having the18

same statistical properties of the original terms. The equations19

for the amplitude of the two modes are then [1]20

da(t)
dt

= κgb(t) +
[
−γ

2
+

g2

Γ
n(t)

]
a(t)

−ig
(

2N
Γ

)1/2
s(−)

a (t) +
√

γ sa(t), (1)

db(t)
dt

= κ∗ga(t) +
[
−γ

2
+

g2

Γ
n(t)

]
b(t)

−ig
(

2N
Γ

)1/2
s(−)

b (t) +
√

γ sb(t). (2)

These equations can be simplified by setting κg = |κg|eiφg and21

defining b(t) = b′(t)e−iφg/2 and a(t) = a′(t)eiφg/2. In terms of22

the new phase shifted fields, the coupling coefficient is real and23

positive, so that Eqs. (1) and (2) can be rewritten, dropping the24

primes for convenience of notation, as25

da(t)
dt

= κgb(t) +
[
−γ

2
+

g2

Γ
n(t)

]
a(t)

−ig
(

2N
Γ

)1/2
s(−)

a (t) +
√

γ sa(t), (3)

db(t)
dt

= κga(t) +
[
−γ

2
+

g2

Γ
n(t)

]
b(t)

−ig
(

2N
Γ

)1/2
s(−)

b (t) +
√

γ sb(t). (4)

The coupling of the two modes through a gain grating is non26

hermitian. As a consequence, the spatial components of the27

material polarization that couple with the two counterpropa-28

gating modes mix, resulting in a statistical dependence of the29

corresponding noise terms s(−)
a and s(−)

b , which in absence of30

coupling are independent. The mixing of the noise terms can31

be quantified if we require the preservation of the commutation32

rules [a, b†] = 0, which signify the independence of the two33

modes. This requirement is satisfied if34

2Ng2

Γ
[s(−)

a (t), s(−)†
b (t′)] = −2κgδ(t − t′). (5)

The commutation relations alone do not specify the correlations35

of the noise operators. However, we notice that the noise sources36

of the material polarization are creation operators so that s(−)
a37

and s(−)
b when applied on the left, and s(−)†

a and s(−)†
b when38

applied on the right, to the state of a fully inverted gain medium39

should give zero. These conditions, combined with the commu-40

tation relations (5), give41

⟨s(−)
a (t)s(−)†

b (t′)⟩ = 0, (6)

⟨s(−)†
b (t′)s(−)

a (t)⟩ =
κg

Ng2/Γ
δ(t − t′), (7)

⟨s(−)
a (t)s(−)

b (t′)⟩ = 0, (8)

http://dx.doi.org/10.1364/ao.XX.XXXXXX
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⟨s(−)†
a (t)s(−)†

b (t′)⟩ = 0. (9)

The equation for the carrier number is [1]42

dn(t)
dt

= R − n(t)
τ

− 4g2

Γ
n(t)

[
a†(t)a(t) + b†(t)b(t)

]
+i2g

(
2N
Γ

)1/2 [
a†(t)s(−)

a (t) + b†(t)s(−)
b (t)

−s(−)†
a (t)a(t)− s(−)†

b (t)b(t)
]
. (10)

We did not include in the equation for the carrier number the43

term44

d∆n(t)
dt

= −4g2

Γ
n(t)

[
a†(t)b(t)eiΩ0t + b†(t)a(t)e−iΩ0t

]
, (11)

responsible for the coupling between the two modes because45

∆n(t) has been implicitly considered in Eqs. (1) and (2) through46

the coefficient κg and, in the analysis that follows, we will take47

into consideration the saturation of this term and its influence48

on the laser dynamics with arguments based on conservation49

laws.50

If we define51

∆g = −γ +
2g2

Γ
n0, (12)

where we have set n = n0 + δn with n0 is the steady state value52

of n, the condition for steady state of Eqs. (3) and (4) is53

κg|b0|ei∆φ +
∆g
2
|a0| = 0, (13)

κg|a0|e−i∆φ +
∆g
2
|b0| = 0, (14)

where we defined a0 = |a0|eiφa , b0 = |b0|eiφb , and ∆φ =54

φa − φb. Steady state is achieved for the two modes with55

equal amplitudes |a0| = |b0|, for κg sin (∆φ) = 0 and for56

∆g = −2κg cos(∆φ). Of the two possible solutions ∆φ = 057

and ∆φ = π, only the one with ∆g < 0 is stable. In the follow-58

ing, we will assume without loss of generality that the phase59

reference for the two modes is chosen such that a0 and b0 are60

real, so that φa = φb = 0.61

Using γ = 2g2n0/Γ − ∆g and assuming full inversion n0 ≃62

N and that at steady state κg = −∆g/2, and defining a = a0 + δa63

and b = b0 + δb, the equations for the displacements of the64

mode amplitudes become65

dδa(t)
dt

= κgδb(t) +
∆g
2

δa(t) +
g2

Γ
a0δn(t)

−i
√

γ − 2κg s(−)
a (t) +

√
γ sa(t), (15)

dδb(t)
dt

= κgδa(t) +
∆g
2

δb(t) +
g2

Γ
b0δn(t)

−i
√

γ − 2κg s(−)
b (t) +

√
γ sb(t). (16)

The correlation of the noise sources for the gain material are66

given by Eqs. (6)–(9) where, using 2g2N/Γ = γ + ∆g = γ − 2κg,67

Eq. (7) becomes68

⟨s(−)†
b (t)s(−)

a (t′)⟩ =
2κg

γ − 2κg
δ(t − t′). (17)

Using that at steady state a0 = b0 and defining the two uncou-69

pled eigenmodes of the system (also known as supermodes)70

c+(t) =
δa(t) + δb(t)√

2
, (18)

c−(t) =
δa(t)− δb(t)√

2
, (19)

we obtain71

dc+(t)
dt

=
g2

√
2 Γ

(a0 + b0) δn(t)

+
√

γ/2 [sa(t) + sb(t)]

−i
√
(γ − 2κg)/2

[
s(−)

a (t) + s(−)
b (t)

]
, (20)

dc−(t)
dt

= −2κgc−(t) +
√

γ/2 [sa(t)− sb(t)]

−i
√
(γ − 2κg)/2

[
s(−)

a (t)− s(−)
b (t)

]
. (21)

If we define now the noise operators72

s+(t) =
sa(t) + sb(t)√

2
, (22)

s−(t) =
sa(t)− sb(t)√

2
,

s(−)
+ (t) =

√
γ − 2κg

γ

s(−)
a (t) + s(−)

b (t)
√

2
, (23)

s(−)
− (t) =

√
γ − 2κg

γ − 4κg

s(−)
a (t)− s(−)

b (t)
√

2
, (24)

and use 2g2n0/Γ = γ − 2κg the above equations become73

dc+(t)
dt

=
1
2
(
γ − 2κg

) a0 + b0√
2

δn(t)
n0

+
√

γ
[
−is(−)

+ (t) + s+(t)
]

, (25)

dc−(t)
dt

= −2κgc−(t)− i
√

γ − 4κg s(−)
− (t) +

√
γ s−(t).

(26)

It may easily be verified that the new noise operators are inde-74

pendent75

s(−)
± (t)s(−)

∓ (t) = 0, (27)
76

s±(t)s
(−)†
∓ (t) = s(−)†

± (t)s∓(t) = 0, (28)

and have, for full inversion ⟨σ3⟩ = 1 and γ > 2κg, the same77

commutation relations of the equivalent uncoupled operators,78

s(−)†
± (t)s(−)

± (t′) = δ(t − t′), (29)

79

s(−)
± (t)s(−)†

± (t) = s(−)
± (t)s(−)

± (t) = s(−)†
± (t)s(−)†

± (t) = 0. (30)

The commutation relations of c±(t) are [c±(t), c†
±(t)] = 1. It80

is easy to verify that d[c±(t), c†
±(t)] = 0 so that Eq. (25) and81

(26) preserve the commutation relations. Defining the two82

quadratures for a generic operator c1 = (δc + δc†)/2 and83

c2 = (δc − δc†)/(2i), we obtain84

dc−,2(t)
dt

= −2κgc−,2(t) +
√

γs−,2(t)−
√

γ − 4κgs(−)
−,1 (t),

(31)
dc−,1(t)

dt
= −2κgc−,1(t) +

√
γs−,1(t) +

√
γ − 4κgs(−)

−,2 (t).

(32)



Research Article 3

The equation for the fluctuations of the carriers is85

dδn(t)
dt

= − δn(t)
τ

− 4g2

Γ
(a2

0 + b2
0)δn(t)

−8g2

Γ
n0 [a0δa1(t) + b0δb1(t)]

−4g
(

2N
Γ

)1/2 [
a0s(−)

a,2 (t) + b0s(−)
b,2 (t)

]
. (33)

This equation however does not include the effect of the de-86

pletion of the carriers that generate the gain grating, whose87

dynamics is described by Eq. (11). Instead of constructing a88

model to describe the formation of the gain grating and its inter-89

action with the two counterpropagating modes, which would90

necessitate making assumptions about the complex physics of91

the laser that are challenging to evaluate, like for instance the92

carrier diffusion attenuating the grating amplitude, we choose93

to introduce a term that account for this effect without a formal94

derivation, relying on the principle that each photon is gener-95

ated through the decay of one carrier. To this aim, we notice96

that the coupling induced by the gain grating produces a rate of97

photon production98

d
dt

(
a†a + b†b

)
coupling = 2κg

(
b†a + a†b

)
, (34)

and therefore the change of carrier number caused by fluctua-99

tions of a and b is100 (
dδn
dt

)
coupling

= −4κg

[
a0
(
δb + δb†)+ b0

(
δa + δa†)] , (35)

where we used that a0 and b0 are real. Equation (33) supple-101

mented with the coupling the term (35) becomes102

dδn(t)
dt

= − δn(t)
τ

− 4g2

Γ
(a2

0 + b2
0)δn(t)

−8g2

Γ
n0 [a0δa1(t) + b0δb1(t)]

−8κg [a0δb1(t) + b0δa1(t)]

−4g
(

2N
Γ

)1/2 [
a0s(−)

a,2 (t) + b0s(−)
b,2 (t)

]
. (36)

Using now once again our assumption of full inversion n0 = N,103

we can replace 2g2N/Γ = γ − 2κg and therefore104

dδn(t)
dt

= − δn(t)
τ

− 2(γ − 2κg)(a2
0 + b2

0)
δn(t)

n0

−4(γ − 2κg) [a0δa1(t) + b0δb1(t)]
−8κg [a0δb1(t) + b0δa1(t)]

−4
√

γ − 2κg

[
a0s(−)

a,2 (t) + b0s(−)
b,2 (t)

]
. (37)

Assuming strong saturation and neglecting spontaneous emis-105

sion compared to stimulated emission, we may assume that the106

carriers adiabatically follow the field fluctuations, so that we107

obtain108

δn(t)
n0

= − 2
a2

0 + b2
0
[a0δa1(t) + b0δb1(t)]

−
4κg

(γ − 2κg)(a2
0 + b2

0)
[b0δa1(t) + a0δb1(t)]

− 2√
γ − 2κg(a2

0 + b2
0)

[
a0s(−)

a,2 (t) + b0s(−)
b,2 (t)

]
. (38)

Entering this expression into Eq. (25) yields109

dc+(t)
dt

= −
(γ − 2κg)(a0 + b0)√

2(a2
0 + b2

0)
[a0δa1(t) + b0δb1(t)]

−
2κg(a0 + b0)√

2(a2
0 + b2

0)
[b0δa1(t) + a0δb1(t)]

−

√
(γ − 2κg)(a0 + b0)
√

2(a2
0 + b2

0)

[
a0s(−)

a,2 (t) + b0s(−)
b,2 (t)

]
−i

√
γs(−)

+ (t) +
√

γ s+(t). (39)

Using the steady state condition a0 = b0 we obtain110

dc+(t)
dt

= −γc+,1(t)

−√
γ

[
s(−)
+,2 (t) + is(−)

+ (t)− s+(t)
]

. (40)

The in-phase and in-quadrature components obey the equations111

dc+,1(t)
dt

= −γc+,1(t) +
√

γ s+,1(t), (41)

dc+,2

dt
=

√
γ
[
s+,2(t)− s(−)

+,1 (t)
]

. (42)

Defining the Fourier transform as112

c(ω) =
∫ ∞

−∞

dω

2π
exp(−iωt)c(t), (43)

we may readily solve Eqs. (31), (32), (41) and (42) in the Fourier113

domain as114

c−,1(ω) =

√
γs−,1(ω) +

√
γ − 4κgs(−)

−,2 (ω)

−iω + 2κg
, (44)

c−,2(ω) =

√
γs−,2(ω)−

√
γ − 4κgs(−)

−,1 (ω)

−iω + 2κg
, (45)

c+,1(ω) =

√
γ

−iω + γ
s+,1(ω), (46)

c+,2(ω) = −
√

γ

iω

[
s+,2(ω)− s(−)

+,1 (ω)
]

. (47)

Let us first analyze the fluctuations of the phases of the intracav-115

ity modes, which are the quantities analyzed in the main text.116

Being the output radiation in a vacuum state, we have117

⟨s±,i(t)s±,i(t′)⟩ =
1
4

δ(t − t′), i = 1, 2. (48)

In addition, Eqs. (27)–(30) imply118

⟨s(−)
±,i (t)s

(−)
±,i (t

′)⟩ = 1
4

δ(t − t′), i = 1, 2, (49)

so that Eq. (44) yields119

⟨c−,1(ω)c†
−,1(ω

′)⟩ =
γ − 4κg

2 (ω2 + 4κ2
g)

2πδ(ω − ω′). (50)

The fluctuations of the difference of the phases of the emitted120

radiation are the difference between the fluctuations of the in-121

quadrature components of the intracavity mode amplitude di-122

vided by the average mode amplitude a0 = b0 =
√

P/(γh̄ω0)123

where P is the average output power per mode, that is ∆φ =124
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γh̄ω/P [

√
2c−,1(ω)] so that the spectrum of the fluctuations125

of the phase difference is126

⟨∆φ(ω)∆φ†(ω′)⟩ =
h̄ω0γ(γ − 4κg)

P(ω2 + 4κ2
g)

2πδ(ω − ω′), (51)

which is the result given in the main text [1], with a small cor-127

rection arising from the fact that the analysis presented here128

accounted for the non-hermiticity of the mode coupling. Notice129

that the term 2πδ(ω − ω′) appearing here and in all other spec-130

tra can be removed by integration over frequency f ′ = ω′/(2π).131

This procedure returns for any given spectrum ⟨x(ω)x(ω′)⟩ the132

Fourier transform of ⟨x(t)x(0)⟩, that is, if x(t) is a stationary133

process, the power spectrum of x(t).134

The amplitude of the emitted radiation is given by135

ra(t) = −sa(t) +
√

γ a(t), (52)

rb(t) = −sb(t) +
√

γ b(t), (53)

so that defining136

rc± (t) =
1√
2
[ra(t)± rb(t)] , (54)

we obtain for the fluctuations137

δrc+ (t) = −s+(t) +
√

γ c+(t), (55)

δrc− (t) = −s−(t) +
√

γ c−(t). (56)

The quadratures of the emitted radiation are readily obtained138

entering Eqs. (44)–(47) into Eqs. (55) and (56)139

δrc− ,1(ω) =
γ s−,1(ω) +

√
γ(γ − 4κg) s(−)

−,2 (ω)

−iω + 2κg
− s−,1(ω),

(57)

δrc− ,2(ω) =
γ s−,2(ω)−

√
γ(γ − 4κg) s(−)

−,1 (ω)

−iω + 2κg
− s−,2(ω),

(58)

δrc+ ,1(ω) =
iω

−iω + γ
s+,1(ω), (59)

δrc+ ,2(ω) = − γ

iω

[
s+,2(ω)− s(−)

+,1 (ω)
]
− s+,2(ω). (60)

As a consistency check, using that140

[s±,1(ω), s†
±,1(ω

′)] = [s±,2(ω), s†
±,2(ω

′)] = 0, (61)
141

[s±,1(ω), s†
±,2(ω

′)] =
1
4
[2πδ(ω − ω′)], (62)

142

[s(−)
±,1 , s(−)†

±,1 (ω′)] = [s(−)
±,2 , s(−)†

±,2 (ω′)] = 0, (63)
143

[s(−)
±,1 , s(−)†

±,2 (ω′)] =
1
4
[2πδ(ω − ω′)], (64)

one may show right away that144

[δrc± ,1(ω), δr†
c± ,1(ω)] = [δrc± ,2(ω), δr†

c± ,2(ω)] = 0, (65)
145

[δrc± ,1(ω), δr†
c± ,2(ω

′)] =
1
4
[2πδ(ω − ω′)], (66)

so that the above equations correctly describe supermodes that146

are independent waves with bosonic commutation rules.147

Using once again the correlation functions of the noise terms148

(61)–(64) we obtain149

⟨δrc− ,2(ω)δr†
c− ,2(ω

′)⟩ =
1
4

[
2γ(γ − 4κg)

ω2 + 4κ2
g

+ 1

]
2πδ(ω − ω′),

(67)

⟨δrc+ ,2(ω)δr†
c+ ,2(ω

′)⟩ =
1
4

(
2γ2

ω2 + 1
)

2πδ(ω − ω′). (68)

The fluctuations of the difference of the phases of the emit-150

ted radiation ∆φout(ω) is the difference of the fluctuations of151

the in-quadrature components divided by the amplitude of the152

output per mode in photon units
√

P/(h̄ω0), that is ∆φout =153 √
h̄ω0/P [

√
2 δrc− ,2] so that the spectrum of the phase difference154

is ⟨∆φout(ω)∆φ†
out(ω

′)⟩ = 2(h̄ω0/P)⟨δrc− ,2(ω)δr†
c− ,2(ω

′)⟩, that155

is156

⟨∆φout(ω)∆φ†
out(ω

′)⟩ = h̄ω0
2P

[
2γ(γ − 4κg)

ω2 + 4κ2
g

+ 1

]
2πδ(ω − ω′).

(69)
The spectra of the phase fluctuations of the beat between the157

intracavity fields Eq. (51) and that of the output waves Eq.158

(69) differ primarily in the region ω ≫ γ, where the spectrum159

of the emitted radiation follows the phase fluctuations of the160

vacuum reflected from the cavity and the variance of the phase161

fluctuations of the beat are the sum of the variances of the phase162

fluctuations of two coherent states.163

If we define φa = δra,2/a0 and φb = δrb,2/b0 as the deviation164

of the phases of the emitted radiation from the steady state and165

use that a0 = b0 we obtain ⟨φa(ω)φ†
a(ω

′)⟩ = ⟨φb(ω)φ†
b(ω

′)⟩166

with167

⟨φa(ω)φ†
a(ω

′)⟩ =
h̄ω0
2P

[
γ2

ω2 +
γ(γ − 4κg)

ω2 + 4κ2
g

+ 1
]

2πδ(ω − ω′),

(70)

⟨φa(ω)φ†
b(ω

′)⟩ =
h̄ω0
2P

[
γ2

ω2 −
γ(γ − 4κg)

ω2 + 4κ2
g

]
2πδ(ω − ω′). (71)

Three spectral regions are present. In the locking region |ω| ≪168

2κg, the phase fluctuations of the two modes are fully correlated169

with ⟨φa(ω)φ†
a(ω

′)⟩ ≃ ⟨φa(ω)φ†
b(ω

′)⟩. In this spectral region,170

the variance of the phase fluctuations of each mode is one half171

of the free-running phase fluctuations of independent modes172

with the same output power and, similarly to the mode-locking173

case [2, 3], equal to the phase fluctuations of a single mode174

whose power is equal to the total power emitted by the laser.175

For 2κg < |ω| < γ, the two modes are unlocked and the phase176

fluctuations are the same of two free running modes of a laser177

which follow the Schawlow–Townes formula. For |ω| ≫ γ the178

phase fluctuations are those of a radiation in a coherent state,179

as expected because they are the shot-noise fluctuations of the180

vacuum field reflected by the laser cavity outside its frequency181

cutoff. The expressions of the frequency noise spectra of the182

mode beat and of the two counterpropagating mode can be183

readily obtained multiplying by ω2 the corresponding phase184

noise spectra.185

Let us now analyze the amplitude fluctuations. We have186

⟨δrc+ ,1(ω)δr†
c+ ,1(ω

′)⟩ =
ω2

4 [ω2 + γ2]
2πδ(ω − ω′), (72)

⟨δrc− ,1(ω)δr†
c− ,1(ω

′)⟩ =
1
4

[
2γ(γ − 4κg)

ω2 + 4κ2
g

+ 1

]
2πδ(ω − ω′),

(73)
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and consequently ⟨δra,1(ω)δr†
a,1(ω

′)⟩ = ⟨δrb,1(ω)δr†
b,1(ω

′)⟩ and187

⟨δra,1(ω)δr†
a,1(ω

′)⟩ =
1
8

[
2γ(γ − 4κg)

ω2 + 4κ2
g

− γ2

ω2 + γ2 + 2

]
2πδ(ω − ω′), (74)

⟨δra,1(ω)δr†
b,1(ω

′)⟩ = −1
8

[
2γ(γ − 4κg)

ω2 + 4κ2
g

+
γ2

ω2 + γ2

]
2πδ(ω − ω′). (75)

For |ω| ≪ γ, similarly to the amplitude squeezing of the radi-188

ation emitted from the laser when pump fluctuations are sup-189

pressed [4, 5], the fluctuations of the sum of the amplitudes of190

the two modes (the fluctuations of the amplitude of the super-191

mode) are below the quantum noise limit (sub-Poissonian) and192

zero at ω = 0. The amplitudes of the two modes are locked, with193

a finite variance, for ω ≪ 2κg, and their fluctuations are corre-194

lated. For 2κg < |ω| < γ, the two modes are unlocked and their195

amplitudes experience partition noise, while the fluctuations of196

the sum of their amplitude are still suppressed. For |ω| ≫ γ,197

above the cutoff introduced by the laser cavity, the amplitude198

fluctuations are those of a radiation in a coherent state, because199

they are those of the vacuum state reflected from the cavity.200

It is interesting to discuss the autocorrelation function of the201

phase fluctuations of the beat of the output fields. Let us suppose202

that the measurement is performed with a finite bandwidth B,203

by assuming an ideal square low-pass filter of bandwidth B with204

a flat unit response for |ω|/(2π) ≤ B/2 and zero outside. This205

situation describes, for instance, an ideal measurement with a206

sampling period Tsampling = 1/B. Then, integration over ω′
207

in the two-dimensional inverse Fourier transform of Eq. (69)208

produces a result that depends only on T = t′ − t. For B ≫ 2κg,209

we may neglect the effect of frequency filtering on the first term210

by approximating, in the convolution with this term, the sinc211

generated by the spectral filtering with a Dirac delta function.212

After doing so, another inverse Fourier transformation with213

respect to ω produces214

⟨∆φout(t + T)∆φout(t)⟩ =
h̄ω0
2P

[
γ(γ − 4κg)

2κg
exp

(
−2κgT

)
+B

sin (πBT)
πBT

]
. (76)

The sinc appearing in this expression represents the effect of215

the filtered vacuum noise reflected from the laser cavity or, in216

a semiclassical language, the shot noise of the detection. Using217

now Eq. (76) in the expression for the Allan variance in terms of218

the time autocorrelation function219

σ2
T =

1
T2

[
3 ⟨∆φout(t)

2⟩ − 4 ⟨∆φout(t + T)∆φout(t)⟩

+ ⟨∆φout(t + 2T)∆φout(t)⟩
]
, (77)

and assuming that T is a multiple of the sampling period if the220

filtering is the effect of sampling, or in general that T ≫ 1/B,221

we obtain222

σ2
T =

h̄ω0

2PT2

[
γ(γ − 4κg)

2κg

[
3 − 4 exp

(
−2κgT

)
+ exp

(
−4κgT

) ]
+ 3B

]
. (78)

For κgT ≫ 1 we have223

σ2
T =

3h̄ω0

2PT2

[
γ(γ − 4κg)

2κg
+ B

]
. (79)

The term proportional to B is the effect that extends to long T224

of the high frequency portion of the vacuum noise fluctuations225

reflected by the laser and coherently added to the emitted light226

beams. This contribution is negligible for B ≪ γ(γ− 4κg)/(2κg).227

Equations (78) and (79) are the same expressions given in the228

main text, with the addition of the shot noise contribution and229

with a small correction arising from the interference between the230

emitted radiation and the vacuum field reflected from the cavity.231
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