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Abstract: Metamaterials are complex structured mixed-material systems with tailored physical9

properties that have found applications in a variety of optical and electronic technologies. New10

methods for homogenizing the optical properties of metamaterials are of increasing importance,11

both to study their exotic properties and because the simulation of these complex structures is12

computationally expensive. We propose a method to extract a homogeneous refractive index13

and wave impedance for inhomogeneous materials. We examine effective medium models,14

where inhomogeneities are subwavelength, and equivalent models where features are larger.15

Homogenization is only physically justified in the former; however, it is still useful in the latter if16

only the reflection, transmission, and absorption are of interest. We introduce a resolution of the17

branching problem in the Nicolson-Ross-Weir method that involves starting from the branch of18

the complex logarithm beginning with the minimum absolute mean derivative and then enforcing19

continuity, and also determine an effective thickness. We demonstrate the proposed method on20

patterned PbS colloidal quantum dot films in the form of disks and birefringent gratings. We21

conclude that effective models are Kramers-Kronig compliant, whereas equivalent models may22

not be. This work illuminates the difference between the two types of models, allowing for better23

analysis and interpretation of the optical properties of complex metamaterials.24

1. Introduction and Background25

Metamaterials are engineered composites, typically composed of multiple materials structured to26

enable unique properties distinct from those of their constituents [1]. Metamaterials have a variety27

of applications in cloaking, communications, sensing, microscopy, and optoelectronics [2, 3].28

To understand the properties of metamaterials, such as negative refractive index [3], and also29

because their structure and anisotropy renders their simulation computationally expensive, it is30

desirable to perform homogenization. This entails assigning a set of bulk properties that mimic31

the behavior of the structured metamaterial, as if it were a homogeneous slab [4–6].32

Here, we explore the differences between various model classes that address metamaterials33

structured on wavelength and sub-wavelength scales, and propose a new homogenization method34

that can be applied to a variety of metamaterials. We suggest a robust solution to the branching35

problem in the popular Nicolson-Ross-Weir (NRW) homogenization method, which overcomes36

issues arising from the starting branch being determined under the assumption of electrical37

thinness. The method involves enforcing continuity after starting from the branch of the38

complex logarithm which has minimum absolute mean derivative at low frequencies. We also39

assign an optimal effective thickness to the slab. Subsequently, we compare the reflectance,40

transmittance, and absorptance of the original inhomogeneous material to the homogeneous41

slab that approximates it, using patterned films of PbS colloidal quantum dots as examples.42

Further, we discuss the Kramers-Kronig compliance of homogenized models, and observe that43

metamaterials with subwavelength inhomogeneities are Kramers-Kronig compliant but those44

with larger inhomogeneiteies may not be. In this work, we define “effective” and “equivalent” as45



they are used in [7, 8]. “Effective” refers to a physical homogenization in which the wavelength46

is much greater than the feature size of the inhomogeneities, and, as a result, the field within the47

effective slab will be similar to the macroscopic field in the heterogeneous medium. “Equivalent”48

is a less restrictive term, which only attempts to reduce the metamaterial to a homogeneous slab49

with the same reflectance, transmittance, and absorptance. If the size of the inhomogeneities50

is comparable to the wavelength, an effective medium is not achievable; however an adequate51

equivalent medium can still be found [7]. An example application of this method is in the52

incorporation of a homogeneous model into the simulation of a larger composite device structure,53

allowing for the use of a fast 1D simulation framework such as the Transfer Matrix Method rather54

than a costly 2D-3D full-wave simulation. A demonstration of this is provided in [9].55

1.1. Effective and Equivalent Materials Parameter Extraction Models56

There are a variety of models for assigning effective or equivalent parameters to materials. A57

simple option is to take a volume average of the component refractive indices. The Maxwell58

Garnett mixing formula [10] uses a point-dipole approximation to obtain an expression for the59

permittivity for arbitrarily shaped particles in a medium, provided their volume fraction is small.60

This constraint limits the applicability to a narrow range of systems [10]. The Bruggeman mixing61

model provides a more symmetric treatment of host medium and inclusions, and is thus applicable62

for any volume fraction. However, the Bruggeman model also does not account for geometry [10].63

Considering particles as points without regard for particle geometry can create models that64

diverge [11] or violate basic principles such as causality [12]. These methods also often break65

down in the presence of strong resonances [11]. Both methods assume inhomogeneities large66

enough to be described by a macroscopic permittivity but still smaller than the wavelength [13],67

making them effective medium models. Other approaches have also been proposed [8], such as68

using average field strengths [14], Drude-Lorentz models [15], or Bloch mode analysis [16].69

Among the most popular homogenization methods is the Nicolson-Ross-Weir (NRW) method70

[17, 18]. This involves obtaining measurements of 𝑆11 and 𝑆21, which are the backward71

(reflected) and forward (transmitted) complex scattering coefficients, respectively. This can be72

done experimentally via a waveguide or transmission line as in [17, 18], or via computational73

simulation. The values of 𝑆11 and 𝑆21 are then used to obtain the complex refractive index74

and wave impedance, from which permittivity and permeability can be obtained. While the75

imaginary part of the refractive index can be determined exactly, the equation for the real part76

of the refractive index involves a complex logarithm with multiple branches, thus resulting in a77

branching problem. The modal analysis, Maxwell Garnett, and NRW methods are compared78

in [19, 20] and their agreement is used to justify the homogenization procedure.79

1.2. The Nicolson-Ross-Weir Method80

In the Nicolson-Ross-Weir method [4, 21, 22], the S-parameters are given as:

𝑆11 (𝜔) =
𝑅01 (𝜔) (1 − 𝑒𝑖2𝑁eff (𝜔)𝑘0𝑑eff )
1 − 𝑅2

01 (𝜔) 𝑒𝑖2𝑁eff (𝜔)𝑘0𝑑eff
(1a)

𝑆21 (𝜔) =
(1 − 𝑅2

01 (𝜔)) 𝑒
𝑖𝑁eff (𝜔)𝑘0𝑑eff

1 − 𝑅2
01 (𝜔) 𝑒𝑖2𝑁eff (𝜔)𝑘0𝑑eff

(1b)

where 𝑅01 (𝜔) = (𝑍eff (𝜔) − 1)/(𝑍eff (𝜔) + 1) is the reflection from the first boundary, 𝑁eff is the
effective refractive index, 𝑍eff is the effective wave impedance, 𝑘0 is the free space wavenumber,



and 𝑑eff is the effective thickness (discussed in Section 1.5). These can be rearranged to give:

𝑍eff (𝜔) = ±

√√
(1 + 𝑆11 (𝜔))2 − 𝑆2

21 (𝜔)
(1 − 𝑆11 (𝜔))2 − 𝑆2

21 (𝜔)
(2)

𝑒𝑖𝑁eff (𝜔)𝑘0𝑑eff =
𝑆21 (𝜔)

1 − 𝑆11 (𝜔)𝑅01 (𝜔)
. (3)

The sign in the equation for 𝑍eff (𝜔) is chosen to ensure that Re{𝑍eff (𝜔)} and Im{𝑁eff (𝜔)}
are both nonnegative, which is the same as enforcing |𝑒𝑖𝑁eff (𝜔)𝑘0𝑑eff | ≤ 1 due to passivity
considerations [4, 21]. Eq. (3) can be rewritten as:

𝑁eff (𝜔) = − 𝑖

𝑘0𝑑eff

(
log

(
𝑆21 (𝜔)

1 − 𝑆11 (𝜔)𝑅01 (𝜔)

)
+ 𝑖2𝜋𝑚

)
, 𝑚 ∈ Z , (4)

where log (·) refers to the principal branch of the complex natural logarithm function. Splitting
the effective refractive index into its real and imaginary parts as 𝑁eff (𝜔) = 𝑛eff (𝜔) + 𝑖^eff (𝜔), we
obtain the following equations:

𝑛eff (𝜔) =
1

𝑘0𝑑eff
Im

{
log

(
𝑆21 (𝜔)

1 − 𝑆11 (𝜔)𝑅01 (𝜔)

)}
+ 2𝜋𝑚
𝑘0𝑑eff

(5a)

^eff (𝜔) = − 1
𝑘0𝑑eff

Re
{
log

(
𝑆21 (𝜔)

1 − 𝑆11 (𝜔)𝑅01 (𝜔)

)}
. (5b)

The imaginary part of the refractive index can be uniquely determined, since it is related
to attenuation which is not periodic, but the real part is ambiguous, since it is connected to
propagation which is periodic, due to 𝑚 being any integer. This is the crux of the branching
problem, with 𝑚 denoting the branching index, and 𝑚 = 0 reducing to the principal branch. We
may combine these two equations to express the permittivity and permeability as:

𝜖eff (𝜔) =
𝑁eff (𝜔)
𝑍eff (𝜔)

`eff (𝜔) = 𝑁eff (𝜔)𝑍eff (𝜔). (6)

Thus, knowledge of the refractive index and wave impedance is equivalent to knowledge of the81

permittivity and permeability.82

1.3. Past Solutions to the Branching Problem83

Many approaches have been taken to solve the branching problem. One approach is via the
Kramers-Kronig relations, given by:

𝑛eff (𝜔) − 1 =
2
𝜋

p.v.
∫ ∞

0

𝜔′^eff (𝜔′)
𝜔′2 − 𝜔2 d𝜔′ (7a)

^eff (𝜔) = −2𝜔
𝜋

p.v.
∫ ∞

0

𝑛eff (𝜔′) − 1
𝜔′2 − 𝜔2 d𝜔′ (7b)

where p.v. denotes the Cauchy principal value [13]. Since ^eff (𝜔) is unique, 𝑛eff (𝜔) can be84

chosen to follow the branches that best satisfy Eq. (7a) [4, 23]. Application of Eq. (7a) yields85

discontinuities, interpreted in [4] as the limit of homogenization or errors from truncation of Eq.86

(7a). Upon phase unwrapping, [24, 25] suggest that the results become continuous. One can also87

enforce causality of the permittivity and permeability through restrictions imposed on 𝑍eff (𝜔)88

and 𝑁eff (𝜔) to calculate the branch number, rounding it at the end [6]. Use of Eq. (7a) to select89

the correct branch can yield inaccuracies due to truncation of the integral and spatial dispersion90

effects [7].91



A different approach is to use d𝑛eff (𝜔)/d𝜔 to enforce continuity of 𝑛eff (𝜔) [26], or to use its92

Taylor expansions and take the initial branch consistent with passivity [21]. A more rigorous93

treatment involves the analytic continuation of the logarithm [22, 27, 28]. An alternative method94

for choosing the initial branch number extends the starting frequency for a small number of95

metamaterial layers to a larger number [5]. Similarly, assuming electrical thinness at a sufficiently96

low frequency results in a small exponent in Eq. (3) and thus 𝑚 = 0 being the starting branch [29].97

However, this requires the wavelength in the sample to be known, which is often not the case,98

to ensure frequencies below the first branch transition are included [7]. If an estimate is used,99

the method will lack robustness, an issue we address with this work. For thick slabs, one can100

compare two thicknesses to find the branch on which they agree; however, the problem of needing101

to know the wavelength in the sample persists [7]. Finally, an alternative solution to the branching102

problem, using deep learning, is presented in [30].103

1.4. Consideration of the Kramers-Kronig Relations104

The NRW method has been reported to yield materials parameters violating basic passivity or105

causality conditions [8]. Moreover, in the presence of nonlinear and saturated polarizability, Eq.106

(7a) may again fail to hold [13,31]. It is also suggested that in systems with gain, the refractive107

index is not required to satisfy a Kramers-Kronig relation (but its square is) [31]. When the108

averaged electric fields are the same for the original material and its effective counterpart (i.e.109

when the wavelength is much greater than the scale of the inhomogeneities) the Kramers-Kronig110

relations must hold as a result of causality [12]. However, in large-feature regimes, where the111

only considerations are the macroscopic reflectance, transmittance, and absorptance spectra of112

the original metamaterial and its equivalent slab, this is no longer a requirement, as demonstrated113

in the present work. The latter approach to homogenization is what we refer to as an “equivalent”114

model rather than an “effective” one, consistent with [7] and [8]. This does not, however, suggest115

that causality is violated, or that superluminal information transfer is possible [12]. Rather, the116

equivalent model is not physical: it is simply the model that results in the same output reflectance,117

transmittance, and absorptance as the original inhomogeneous material. It is unphysical to treat118

its internal workings as homogeneous since the wavelength is on par with the feature size and119

effects such as diffraction and scattering dominate. A related discussion of causality-violating120

models produced when using point-dipole approximations is available in [12]. In these cases, the121

true geometry approximated by a point dipole interacts with a wave before the imagined dipole at122

its center, thus making it seem as if the response to the wave occurred before the interaction with123

the object.124

1.5. Effective Thickness125

The effective thickness of a metamaterial is distinct from its geometric thickness. In [21], the126

effective thickness is calculated via the boundaries at which incident and outgoing waves are127

planar. The effective thickness can also be handled by rounding the branch number obtained from128

the Kramers-Kronig relations and taking the effective thickness as the number that minimizes129

the rounding error [6]. We may make a further argument regarding how interaction with130

geometric structures prior to reaching an assumed point dipole creates models that violate131

causality [12]. Since the plane-wave behavior breaks down significantly for equivalent materials,132

it is possible that this interaction before the geometric boundary is responsible for the violation133

of the Kramers-Kronig relations. This is discussed further in Section 3.3.134

1.6. Motivation135

Here, we construct a method to create effective and equivalent models for inhomogeneous136

materials that solves the branching problem in the NRW method. The process involves a simple137

approach of starting at the flattest branch and employing continuity. We use the assumption that138



any medium will act as a homogeneous slab at very long wavelengths and thus eventually the139

materials parameters will stabilize to the DC limit.140

Together with the consideration that the branches will separate for low frequencies, the141

unphysical branches will steepen while the correct one will not. Even if the starting branch142

index is not zero, we can use continuity to trace through the rest of the spectrum. This notion of143

continuity is that suggested in [7] and [25]. Thus, the “hard” requirement that the sample be144

thin enough to start at a branch index of zero is eased to a “soft” requirement that the correct145

branch have a lower absolute mean derivative than the others, a simple and intuitive requirement146

true for a wide range of materials. It is in this sense that our method is robust, requiring only a147

comparison across a range of branches to find the one with minimum absolute mean derivative.148

We confirm the validity of our results via the analytically calculated optical properties, observing149

high agreement with the FDTD simulation of the inhomogeneous slab. Moreover, we also150

minimize the error in these comparisons to determine an effective thickness for the slabs. We151

argue that effective models obey the Kramers-Kronig relations since it is physically justifiable to152

treat them as homogeneous while equivalent models need not obey the Kramers-Kronig relations153

due to the models’ unphysical nature, where they are simply used to match optical behavior.154

2. Methods155

2.1. Solution to the Branching Problem156

We use the Lumerical Finite Difference Time Domain (FDTD) solver [32] to simulate and extract157

the scattering coefficients 𝑆11 and 𝑆21 for the inhomogeneous material, and subsequently make158

all calculations up to and including Eq. (5a) and Eq. (5b).159

Our resolution is to start from the branch with the minimum derivative in the low frequency160

limit, then use continuity to trace the correct function through the branches. At sufficiently low161

frequencies, optical effects associated with finite inhomogeneities appproach their low frequency162

limit behavior. Here, the refractive index, permittivity, and permeability are constants for a wide163

variety of materials.164

We start by using approximate physical considerations to set an upper branch limit. Branch
number is connected to the number of complete periods traversed by the wave in the material.
We are mainly concerned with the visible and near infrared (NIR) portions of the spectrum, so
we consider a rough upper limit of 10 for the refractive index and a lower wavelength limit of
200 nm, leaving some tolerance. Then, to obtain the approximate number of complete periods
traversed in a round trip in the material, we can write:

𝑚high = round
(

2𝑑eff
_min/𝑛max

)
= round

(
𝑑eff
10

)
(for 𝑑eff in nanometers). (8)

The branch with the lowest absolute mean derivative can be chosen since the term in Eq. (5a)
containing the branch index is a reciprocal of 𝑘0 and thus of the frequency, meaning that the false
branches become very steep for low frequency (to be more precise, for a small value of 𝑘0𝑑eff,
which is dimensionless). Then, in order to find the minimum absolute mean derivative at low
frequencies, we may denote the 𝑚th branch of 𝑛eff as 𝑛eff,𝑚 (𝜔 𝑗 ), where 𝑗 is the index denoting
the 𝑗 th frequency point considered, starting from the lowest ( 𝑗 = 1). Then for a suitably chosen
𝑗 ′ such that a discontinuity is avoided, we may write the branch index for the first point 𝑚1 as:

𝑚1 = argmin𝑚≤𝑚high


������ 1
𝑗 ′

𝑗= 𝑗′∑︁
𝑗=1

𝑛eff,𝑚 (𝜔 𝑗+1) − 𝑛eff,𝑚 (𝜔 𝑗 )
𝜔 𝑗+1 − 𝜔 𝑗

������
 (9)

Subsequently, we may retrieve the remaining branch indices via the assumption of continuity,
using the index from the current branch and its two nearest neighbors and selecting the closest



one. We have also attempted a first-order Taylor series based method for this, but it did not
produce a tangible difference and is thus not presented in this work. The branch index 𝑚 𝑗+1 is
found from 𝑚 𝑗 via the recursive relation:

𝑚 𝑗+1 = argmin𝑚∈[𝑚 𝑗−1,𝑚 𝑗+1],𝑚≤𝑚high

{��𝑛eff,𝑚 (𝜔 𝑗+1) − 𝑛eff,𝑚 𝑗
(𝜔 𝑗+1)

��} (10)

which is well-defined since 𝑚1 is known from Eq. (9). We are thus able to find all of the165

branch indices and thus the correct 𝑛eff (𝜔), which is a piecewise combination of the branches.166

The typical behavior is that the subsequent branch begins when the argument of the complex167

exponential in Eq. (3) exceeds an integer multiple of 𝑖2𝜋, since remaining on the same branch168

would then cause a discontinuity.169

2.2. Effective Thickness and Modeling the Effective/Equivalent Slab170

Next, we calculate the reflectance 𝑅, transmittance 𝑇 , and absorptance 𝐴 of both the original
heterogeneous material and its effective or equivalent model. The inhomogeneous values 𝑅inh (𝜔),
𝑇inh (𝜔), and 𝐴inh (𝜔) were calculated via FDTD directly, using a plane-wave source. The
corresponding values for the effective and equivalent media were calculated via the theoretical
consideration of a single slab in free space. The solution for the optical behavior of a single slab
is well-known and available in [33]. We may write:

Γ12 (𝜔) =
𝑁eff (𝜔) − 1
𝑁eff (𝜔) + 1

, Γ21 (𝜔) =
1 − 𝑁eff (𝜔)
1 + 𝑁eff (𝜔)

, 𝜏12 (𝜔) =
2

𝑁eff (𝜔) + 1
𝜏21 (𝜔), =

2 𝑁eff (𝜔)
𝑁eff (𝜔) + 1

Γ(𝜔) = Γ12 (𝜔) + Γ21 (𝜔)𝑒𝑖2𝑁eff (𝜔)𝑘0𝑑eff

1 + Γ12 (𝜔)Γ21 (𝜔)𝑒𝑖2𝑁eff (𝜔)𝑘0𝑑eff
(11a)

𝜏(𝜔) = 𝜏12 (𝜔)𝜏21 (𝜔)𝑒𝑖𝑁eff (𝜔)𝑘0𝑑eff

1 + Γ12 (𝜔)Γ21 (𝜔)𝑒𝑖2𝑁eff (𝜔)𝑘0𝑑eff
(11b)

𝑅eff (𝜔) = |Γ(𝜔) |2, 𝑇eff (𝜔) = |𝜏(𝜔) |2, 𝐴eff (𝜔) = 1 − 𝑅eff (𝜔) − 𝑇eff (𝜔) (12)

These are essentially the same formulae that we used when calculating the effective parameters171

through the NRW method and the S-parameters. Thus, we expect agreement to be exact in the172

case of an effective medium, and approximate in the case of an equivalent medium, which will173

fail to account for all the relevant optical effects.174

We further refine our method to find the effective thickness in the wavelength range of interest,175

taking advantage of the slab equations presented above. We optimize for the value of 𝑑eff by176

using the NRW method and the associated calculation of the reflectance, transmittance, and177

absorptance and calculating the mean squared error (MSE) between our FDTD simulations and178

slab calculations as below:179

𝑑eff = argmin𝑑

{
1

3 𝑗max

(∑︁
𝑗

(𝑅eff (𝜔 𝑗 ) − 𝑅inh (𝜔 𝑗 ))2

+
∑︁
𝑗

(𝑇eff (𝜔 𝑗 ) − 𝑇inh (𝜔 𝑗 ))2 +
∑︁
𝑗

(𝐴eff (𝜔 𝑗 ) − 𝐴inh (𝜔 𝑗 ))2

)}
, (13)

where 𝑗max denotes the total number of frequency points. We then use the resulting value of 𝑑eff180

to report our final 𝑁eff (𝜔). The method is presented as a schematic in Fig. 1. Note that only a181

single FDTD simulation is required to create a model that can be reused arbitrarily many times182

(for example in a larger structure [9]).183



Fig. 1. Schematic of the procedure employed in this work for metamaterial homogeniza-
tion, via optimizing the NRW method over the effective thickness. Following a single
FDTD simulation to obtain the S-parameters, the modified NRW method is applied for
different candidates for the effective thickness (𝑑0, 𝑑1, . . . , 𝑑max), and the 𝑑 with the
lowest mean squared error (MSE) compared to the FDTD calculation is chosen.

3. Results and Discussion184

We demonstrate the accuracy of our method with a variety of examples. We first check that our185

method is self-consistent and accurately retrieves parameters from a homogeneous slab. We186

then move to patterned thin films of PbS colloidal quantum dots (CQDs), and demonstrate that187

the equivalent models we create are accurate, and that this accuracy is further improved with188

effective thickness optimization. Afterwards, we compare two different size regimes of the same189

structure, one corresponding to an equivalent model and the other to an effective model (with190

respect to the visible and NIR wavelengths). We then investigate the Kramers-Kronig compliance191

of these models. Finally, we introduce an example of a birefringent grating structure and192

compare the spectra obtained at different polarizations. The materials we use have applications193

to hierarchically structured spectrally selective optoelectronics [34].194

3.1. Homogeneous Slab Example195

As an example, we start by considering a 790 nm thick homogeneous slab of Si. The calculated196

branches, the branch number, the extracted refractive index, and the optical behavior are shown in197

Fig. 2. For homogeneous slabs, the effective thickness and geometric thickness are unsurprisingly198

the same. The agreement in optical behavior is excellent, and any error is explained by FDTD199

simulation resolution. The resulting MSE is 4.69 × 10−5. The extracted solution is the correct200

combination of the branches, as can be seen in Fig. 2. Most notably, the first branch index is201

𝑚1 = 1, demonstrating the capability of the method to start from a nonzero branch index and202

thus removing the previous strict requirement of a thin slab [29]). The ability of our model to203

correctly start from nonzero branch numbers demonstrates its robustness.204

3.2. Equivalent Models for Patterned Slabs205

We next demonstrate the model for an array of PbS CQD disks in free space, a patterned structure206

relevant in spectrally selective optical devices such as solar cells [34]. The disk radius is 253 nm,207

the period is 632 nm, and the thickness is 790 nm. The refractive index data for PbS CQDs was208

obtained experimentally via variable angle spectroscopic ellipsometry (VASE) measurements.209

The results are given in Fig. 3. Note that since the inhomogeneities are of size comparable to210

the wavelength, this is only an equivalent model for most of the wavelength range of interest.211



Fig. 2. Demonstration of the method using the example of a homogeneous slab of Si.
(a) Branches of the complex logarithm (dotted) and real (𝑛eff) and imaginary (^eff) parts
of the extracted refractive index (solid). (b) Variation of branch number with frequency.
(c) Extracted refractive index (solid lines) and input refractive index (dashed lines) of
the Si slab. (d) Reflectance (blue), transmittance (green), and absorptance (red) from
the FDTD simulation of the inhomogeneous slab (𝑅inh, 𝑇inh, 𝐴inh; solid lines) and the
analytic homogeneous slab formulas (𝑅eff, 𝑇eff, 𝐴eff; dashed lines), showing agreement.

This explains the mild discrepancies between the inhomogeneous structure and its equivalent212

model, since the latter cannot account for effects such as diffraction. It is worth noting that the213

peak wavelength locations mostly match between the two sets of spectra in Fig. 3d; however, the214

amplitudes are slightly different. For sake of comparison, Fig. 4 displays the optical behavior215

with and without effective thickness optimization. As can be seen in the figure, there is a value of216

𝑑eff minimizing the MSE that is slightly thicker than the slab itself, supporting the notion that217

an extra buffer is needed around the material to account for non-plane wave behavior. We thus218

demonstrate the improvement in our model that effective thickness optimization provides.219

3.3. Kramers-Kronig Compliance of Effective and Equivalent Models for Patterned220

Slabs221

We next demonstrate two size regimes of the aforementioned patterned PbS CQD structure222

to compare an effective medium (with feature size much smaller than the wavelength) with223

an equivalent one (with feature size comparable to the wavelength). The precise geometry of224

the former consists of a 158 nm period and 63 nm disk radius, with a thickness of 790 nm,225

while the latter is the example of Fig. 3. The refractive index models and spectra for the two226

regimes are shown in Fig. 5. We compare 𝑛eff for each structure to that found by applying227

the Kramers-Kronig relation of Eq. (7a) to ^eff. The results are also given in Fig. 5. Slight228



Fig. 3. The use of the method for a patterned slab. (a) The inhomogeneous structure, a
PbS CQD thin film patterned into an array of disks. The disk radius is 253 nm, the
period is 632 nm, and the thickness is 790 nm. (b) The equivalent refractive index
model, with real (𝑛eff) and imaginary (^eff) parts shown. (c) The MSE as a function of
effective thickness, with geometric thickness of 790 nm and optimal effective thickness
of 948 nm. (d) Reflectance (blue), transmittance (green), and absorptance (red) from
the FDTD simulation of the inhomogeneous slab (𝑅inh, 𝑇inh, 𝐴inh; solid lines) and the
analytic homogeneous slab formulas (𝑅eff, 𝑇eff, 𝐴eff; dashed lines).

Fig. 4. Comparison of the reflectance (blue), transmittance (green), and absorptance
(red) from the FDTD simulation of the inhomogeneous slab (𝑅inh, 𝑇inh, 𝐴inh; solid
lines) and the analytic homogeneous slab formulas (𝑅eff, 𝑇eff, 𝐴eff; dashed lines) under
the (a) presence and (b) absence of effective thickness optimization for the patterned
slab in Fig. 3.



discrepancies in the Kramers-Kronig relations are expected due to truncation of the integral and229

the numerical handling of the point in the integral that would normally cause divergence. We230

observe that, for the effective model, the Kramers-Kronig relations are obeyed within bounds231

of the aforementioned error. However, there is major discrepancy with the predictions of the232

Kramers-Kronig relations in the case of the equivalent model. This is explained by the unphysical233

nature of the homogeneity approximation on this scale. Furthermore, the real part of the refractive234

index calculated from the Kramers-Kronig relations and that calculated from the NRW method235

approach each other for longer wavelengths, where feature size becomes effectively smaller in236

comparison, and the model moves towards the “effective” regime. This behavior further supports237

the connection between Kramers-Kronig compliance and the effective regime. We also note that238

the agreement between the modeled and simulated slabs is almost exact for the case of feature239

size much smaller than the wavelength, but less so in the case where wavelength and feature size240

are comparable. This discrepancy is alleviated by the optimization for effective thickness, as241

discussed previously.242

Fig. 5. Comparison of effective (158 nm period and 63 nm disk radius) and equivalent
(632 nm period and 253 nm disk radius) PbS CQD patterned slab arrays (both thicknesses
are 790 nm). For the material with feature size much less than wavelength, the refractive
index model (imaginary part ^eff, real part via Kramers-Kronig transformation 𝑛eff, KK,
and real part via the algorithm in this work 𝑛eff) is given in (a) and comparison of
the reflectance (blue), transmittance (green), and absorptance (red) from the FDTD
simulation of the inhomogeneous slab (𝑅inh, 𝑇inh, 𝐴inh; solid lines) and the analytic
homogeneous slab formulas (𝑅eff, 𝑇eff, 𝐴eff; dashed lines) is given in (b). Similarly, for
the material with feature size comparable to wavelength, refractive index model and
optical behavior are given in (c) and (d), which are repeated from Fig. 3 for ease of
comparison.

Finally, we compare the field profiles for the two cases (Fig. 6), to illustrate the plane wave243



behavior and how it relates to the effective thickness and adherence to the Kramers-Kronig244

relations. As can be seen, plane wave behavior persists until almost the geometric boundary of245

the material for the case of the effective medium model, justifying the effective thickness being246

close to the geometric thickness for effective models; however, for the equivalent case, the plane247

wave behavior begins and ends further from the boundaries. As visible in Fig. 3, the effective248

thickness is 948 nm, and it can be seen in Fig. 6 that the non-plane wave behavior is indeed249

approximately within such a range, rather than the geometric thickness of 790 nm. Additionally,250

we note that the effective thickness is calculated to account for the behavior across all frequencies,251

so it includes a consideration of where plane wave behavior starts for each frequency, not just252

those shown.253

Fig. 6. Comparison of the magnitude of the electric field calculated using FDTD
simulations at 1060 nm wavelength for (a) the PbS CQD disk array with feature size
much less than (158 nm period and 63 nm disk radius) and (b) comparable (632 nm
period and 253 nm disk radius) to the wavelength (both thicknesses are 790 nm). In
both cases, the plane wave excitation source, with amplitude 𝐸0, is incident from the
bottom of the image.

3.4. Birefringent Grating254

We also demonstrate the method on an anisotropic grating, with differences in the refractive index255

spectra at parallel and perpendicular polarizations of the electric field relative to the grating.256

The grating, made of strips of a PbS CQD thin film, is infinite in one direction, with a width of257

200 nm, thickness of 790 nm, and a periodicity of 400 nm. The results are given in Fig. 7. The258

models are both equivalent models due to the feature size, and as expected we observe slight259

disagreement in optical spectra and a lack of Kramers-Kronig compliance. It is worth noting that260

simpler models that do not account for geometry (such as volume averaging) would not be able261

to make such a distinction in refractive index for birefringence.262

4. Conclusion263

In this work, we have proposed and demonstrated a method for metamaterial homogenization264

and parameter extraction that robustly solves the branching problem in the NRW method and265

incorporates effective thickness. We also analyze our results in the context of Kramers-Kronig266

relations and elucidate the difference between effective and equivalent models.267

Our method introduces the idea of starting at the branch of the complex NRW logarithm which268

begins with the minimum absolute mean derivative, and then enforcing continuity of the function269



Fig. 7. Demonstration of the method proposed in this work on a birefringent grating,
which is infinite in one direction, with a width of 200 nm, thickness of 790 nm, and a
periodicity of 400 nm. With electric field polarization (blue arrow) parallel to the grating
(a), the equivalent refractive index (imaginary part ^eff, real part via Kramers-Kronig
transformation 𝑛eff, KK, and real part via the algorithm in this work 𝑛eff) is shown in
(c) and comparison of reflectance (blue), transmittance (green), and absorptance (red)
from the FDTD simulation of the inhomogeneous slab (𝑅inh, 𝑇inh, 𝐴inh; solid lines)
and the analytic homogeneous slab formulas (𝑅eff, 𝑇eff, 𝐴eff; dashed lines) (e). Under
perpendicular polarization (b), the equivalent refractive index is shown in (d) and the
corresponding optical spectra in (f). The blue arrow represents the electric field, and
the green arrow represents the magnetic field. The incident wave propagates from
behind the structure and out of the figure.



to obtain the rest of the real part of the refractive index. This method is robust to the frequency270

range used compared to previous models. Moreover, we compare the reflectance, transmittance,271

and absorptance of the heterogeneous model to that of the effective or equivalent homogeneous272

slab and observe nearly exact agreement. This indicates that the homogenization process is273

physically valid since feature size is much smaller than wavelength. There are mild discrepancies274

for equivalent models where effects such as diffraction cannot be accounted for by a homogeneous275

slab, but the optical behavior is nonetheless close enough for most practical purposes. We choose276

the effective thickness of the modeled slab such that the deviation from the optical behavior of277

the original material is minimized. The effective thickness is the same as the geometric thickness278

for an effective model but typically thicker for an equivalent model due to the extended region in279

which the fields do not behave as a plane wave. Thus, our comparison of optical behavior not only280

serves as verification of our model, but also allows improvement of the results by enabling us to281

choose the optimal effective thickness. We have also examined the compliance of the effective282

and equivalent medium models with the Kramers-Kronig relations. We show that effective283

models are Kramers-Kronig compliant due to the physical nature of assuming homogeneity,284

whereas equivalent models do not necessarily comply with the Kramers-Kronig relations due285

to the somewhat unphysical nature of the homogeneity assumption, and not due to an actual286

violation of causality. This noncompliance does not invalidate the model, since a homogeneous287

model with the same optical behavior is still produced.288

In conclusion, our compact method can obtain both effective and equivalent material models,289

which greatly simplifies both simulation and interpretation of heterogeneous media in complex290

photonic structures. This method could be deployed across a variety of applications that integrate291

multiple components and are computationally expensive to simulate since it allows for solving or292

optimization by 1D means such as the Transfer Matrix Method rather than 2D or 3D methods293

such as full-wave simulations [9], broadening the applications for metamaterial components.294

Funding. This work was supported by the National Science Foundation (ECCS- 1846239). This work295

was carried out at the Advanced Research Computing at Hopkins (ARCH) core facility (rockfish.jhu.edu),296

which is supported by the National Science Foundation (NSF) grant number OAC1920103.297

Acknowledgments. The authors would like to thank Serene Kamal for fruitful discussions.298

Disclosures. The authors declare no conflicts of interest.299

Data Availability Statement. The original algorithm and other data underlying the results presented in300

this paper are made available by the authors at https://github.com/jhu-nanoenergy/Parameter-Extraction-301

Homogenization.302

References303

1. M. Kadic, G. W. Milton, M. van Hecke, and M. Wegener, “3D metamaterials,” Nat. Rev. Phys. 1, 198–210 (2019).304

2. G. Oliveri, D. H. Werner, and A. Massa, “Reconfigurable electromagnetics through metamaterials—a review,” Proc.305

IEEE 103, 1034–1056 (2015).306

3. G. Singh, Rajni, and A. Marwaha, “A review of metamaterials and its applications,” Int. J. Eng. Trends Technol.307

(ĲETT) 19 (2015).308

4. Z. Szabó, G.-H. Park, R. Hedge, and E.-P. Li, “A unique extraction of metamaterial parameters based on309

Kramers–Kronig relationship,” IEEE Trans. on Microw. Theory Tech. 58, 2646–2653 (2010).310

5. Y. Shi et al., “An electromagnetic parameters extraction method for metamaterials based on phase unwrapping311

technique,” Waves Random Complex Media 26, 417–433 (2016).312

6. S. Yoo et al., “Causal homogenization of metamaterials,” Nanophotonics 8, 1063–1069 (2019).313

7. S. Arslanagic et al., “A review of the scattering-parameter extraction method with clarification of ambiguity issues in314

relation to metamaterial homogenization,” IEEE Antennas Propag. Mag. 55, 91–106 (2013).315

8. A. Alù, “First-principles homogenization theory for periodic metamaterials,” Phys. Rev. B 84 (2011).316

9. E. G. Ozaktas, S. Chintapalli, and S. M. Thon, “Effective and equivalent refractive index models for patterned solar317

cell films via a robust homogenization method.” in 50th IEEE Photovoltaic Specialists Conference (PVSC 2023),318

(San Juan, Puerto Rico, 2023).319

10. V. A. Markel, “Introduction to the Maxwell Garnett approximation: tutorial,” J. Opt. Soc. Am. A 33, 1244–1256320

(2016).321



11. V. A. Markel, “Maxwell Garnett approximation (advanced topics): tutorial,” J. Opt. Soc. Am. A 33, 2237–2255322

(2016).323

12. A. Alù et al., “Causality relations in the homogenization of metamaterials,” Phys. Rev. B 84 (2011).324

13. V. Lucarini, J. J. Saarinen, K.-E. Peiponen, and E. Vartiainen, Kramers-Kronig Relations in Optical Materials325

Research (Springer, 2005).326

14. D. R. Smith, D. C. Vier, and N. Kroll, “Direct calculation of permeability and permittivity for a left-handed327

metamaterial,” Appl. Phys. Lett. 77, 2246–2248 (2000).328

15. G. Lubkowski, R. Schuhmann, and T. Weiland, “Extraction of effective metamaterial parameters by parameter fitting329

of dispersive models,” Microw. Opt. Technol. Lett. 49, 285–288 (2007).330

16. A. Andryieuski et al., “Unified approach for retrieval of effective parameters of metamaterials,” Proc. SPIE 8070331

(2011).332

17. A. M. Nicolson and G. F. Ross, “Measurement of the intrinsic properties of materials by time-domain techniques,”333

IEEE Trans. on Instrum. Meas. 19, 377–382 (1970).334

18. W. B. Weir, “Automatic measurement of complex dielectric constant and permeability at microwave frequencies,”335

Proc. IEEE 62, 33–36 (1974).336

19. S. Campione et al., “Complex modes and effective refractive index in 3d periodic arrays of plasmonic nanospheres,”337

Opt. Express 19, 26027–26043 (2011).338

20. S. Campione and F. Capolino, “Composite material made of plasmonic nanoshells with quantum dot cores:339

loss-compensation and 𝜖 -near-zero physical properties,” Nanotechnology 23 (2012).340

21. X. Chen et al., “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E 70341

(2004).342

22. G. Angiulli and M. Versaci, “Retrieving the effective parameters of an electromagnetic metamaterial using the343

Nicolson-Ross-Weir method: An analytic continuation problem along the path determined by scattering parameters,”344

IEEE Access 9, 77511 – 77525 (2021).345

23. V. V. Varadan and R. Ro, “Unique retrieval of complex permittivity and permeability of dispersive materials from346

reflection and transmitted fields by enforcing causality,” IEEE Trans. on Microw. Theory Tech. 55, 2224–2230 (2007).347

24. J. J. Barroso and U. C. Hasar, “Comments on “a unique extraction of metamaterial parameters based on Kramers–Kronig348

relationship”,” IEEE Trans. on Microw. Theory Tech. 60, 1743–1744 (2012).349

25. J. J. Barroso and U. C. Hasar, “Constitutive parameters of a metamaterial slab retrieved by the phase unwrapping350

method,” J. Infrared, Millim. Terahertz Waves 33, 237–244 (2012).351

26. Y. T. Aladadi and M. A. S. Alkanhal, “Extraction of metamaterial constitutive parameters based on data-driven352

discontinuity detection,” Opt. Mater. Express 9, 3765–3780 (2019).353

27. G. Angiulli and M. Versaci, “An analytic continuation algorithm for recovering the electromagnetic parameters of354

metamaterials,” in Photonics & Electromagnetics Research Symposium (PIERS), (Hangzhou, China, 2021).355

28. G. Angiulli and M. Versaci, “Extraction of the electromagnetic parameters of a metamaterial using the Nicol-356

son–Ross–Weir method: An analysis based on global analytic functions and Riemann surfaces,” Appl. Sci. 12357

(2022).358

29. F. Costa et al., “Electromagnetic characterisation of materials by using transmission/reflection (T/R) devices,”359

Electronics 6 (2017).360

30. S. Huang et al., “An electromagnetic parameter retrieval method based on deep learning,” J. Appl. Phys. 127,361

1058–1068 (2020).362

31. M. I. Stockman, “Criterion for negative refraction with low optical losses from a fundamental principle of causality,”363

Phys. Rev. Lett. 98 (2007).364

32. Ansys, Ansys Lumerical FDTD, https://www.ansys.com/products/photonics/fdtd.365

33. O. Stenzel, The Physics of Thin Film Optical Spectra (Springer, 2015).366

34. B. Qiu, Y. Lin, E. S. Arinze, A. Chiu, L. Li, and S. M. Thon, “Photonic band engineering in absorbing media for367

spectrally selective optoelectronic films,” Opt. Express 26, 26933–26945 (2018).368


