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Abstract: Organoids, derived from human induced pluripotent stem cells (hiPSCs), are 
intricate three-dimensional in vitro structures that mimic many key aspects of the complex 
morphology and functions of in vivo organs such as the retina and heart. Traditional histological 
methods, while crucial, often fall short in analyzing these dynamic structures due to their 
inherently static and destructive nature. In this study, we leveraged the capabilities of optical 
coherence tomography (OCT) for rapid, non-invasive imaging of both retinal, cerebral, and 
cardiac organoids. Complementing this, we developed a sophisticated deep learning approach 
to automatically segment the organoid tissues and their internal structures, such as hollows and 
chambers. Utilizing this advanced imaging and analysis platform, we quantitatively assessed 
critical parameters including size, area, volume, and cardiac beating, offering a comprehensive 
live characterization and classification of the organoids. These findings provide profound 
insights into the differentiation and developmental processes of organoids, positioning 
quantitative OCT imaging as a potentially transformative tool for future organoid research. 

 

1. Introduction 
Organoids, a groundbreaking development in tissue engineering and regenerative medicine, are 
three-dimensional cell cultures that closely replicate the structure and functionality of actual 
human organs [1-3]. These miniaturized organ analogs are usually cultivated from human 
induced pluripotent stem cells (hiPSC) through a complex in vitro differentiation process [4]. 
Occupying a distinct niche at the intersection of cell-based assays and in vivo animal models, 
human organoids strike a unique balance, offering physiological relevance akin to whole 
organisms while maintaining the experimental control of conditions. This reduced systemic 
complexity, as compared to full organisms, aids in streamlining data interpretation and isolating 
specific biological mechanisms or pathways. Human organoids have revolutionized research in 
key areas such as complex organ development, disease modeling, drug testing, and potential 
applications in organ transplantation, marking a significant stride in biomedical research and 
therapeutic development [5, 6]. 

Recently, human retinal organoids have become a focal point in vision research due to their 
ability to mimic many aspects of the human retina's structure and complexity [7-10]. These 
organoids, encompassing all necessary cell types, are instrumental in advancing our 
understanding of human retinal development, degeneration, and diseases such as age-related 
macular degeneration and retinitis pigmentosa, as well as other forms of inherited retinal 
dystrophies [11]. They are invaluable for developing and testing new treatments, such as gene 



and cell therapies, offering a more relevant model than traditional 2D cultures. On a similar 
front, human cardiac organoids are revolutionizing cardiovascular research by replicating heart 
tissue properties and aiding in understanding heart diseases like cardiomyopathy and 
myocardial infarction, mimicking aspects of heart tissue, including its unique muscular and 
electrical properties [12-15]. They serve as crucial tools for investigating cardiac function and 
pathology. Overall, human retinal and cardiac organoids are at the forefront of developmental 
biology, stem cell technology, and tissue engineering, significantly advancing medical research. 

However, the full potential of organoids is often limited by the lack of effective live imaging 
tools, particularly for 3D, longitudinal, and real-time assessments. Traditional histology, while 
detailed, falls short in imaging organoids due to its inability to monitor changes in the same 
samples, capturing only static snapshots of organoid growth and response to treatments. These 
limitations highlight the need for non-destructive imaging modalities capable of facilitating 
longitudinal studies and real-time monitoring of organoids, such as the OCT [16], a promising 
solution in this regard. In 2019, Elizabeth et al. used OCT for organoid assessments, aiming to 
reduce selection bias [17]. Dr. Kate Grieve’s team advanced dynamic full-field OCT for 
noninvasive, living imaging of retinal organoids [18, 19]. Dr. Yoshiaki Yasuno’s group 
leveraged OCT to study tissue dynamics in tumor and alveolar spheroids, providing insights 
into growth and behavior [20-23], while Dr. Chao Zhou’s team focused on investigating cardiac 
organoid growth using OCT [24, 25]. The Vienna group applied ultra-high-resolution and 
multi-angle OCT for detailed organoid visualization [26, 27]. Collectively, these diverse 
applications highlight OCT's versatility in enabling high-resolution, rapid, and non-invasive 
evaluation of organoids in various research fields to advance our understanding of these 
complex 3D structures. 

In this study, we utilized OCT imaging [28] to examine retinal, cerebral, and cardiac 
organoids. Significantly, we developed a deep learning network to segment the organoid tissues 
and their internal structures automatically. This enabled us to calculate quantitative biomarkers 
for morphological and functional analysis. Specifically, we distinguished retinal organoids 
from cerebroids, a differentiation by-product, based on the hollow structures. In cardiac 
organoids, we recorded their beating and correlated the number of chambers with their volume 
percentage. Overall, we anticipate that the integration of OCT and deep learning segmentation 
will contribute to precise quantifications, accelerating the pace of research for organoids. 

2. Methods 
2.1 Organoids 

Differentiation of human retinal organoids (hRetOrg) procedure was based on previously 
described protocols [10, 29, 30], and cerebral organoids (cerebroids) were generated as by-
products. Briefly, hiPSCs (line IMR90-4, WiCell) were dissociated to single cells using 
Accutase (Thermofisher Scientific, # 00-4555-56) and mechanical dissociation with a P1000 in 
1-ml of mTeSRTM Plus (STEMCELL Technologies, #100-0276) containing 10-µM Rock 
inhibitor Y-27632 (STEMCELL Technologies, #72304). hiPSCs were then plated on 100-mm 
petri dishes (VWR # 25384-088) with a total volume of 10-ml mTeSRTM Plus to promote the 
formation of embryoid bodies (EBs). On Day (D) 1, approximately 1/3 of the medium was 
exchanged for neural induction medium (NIM) containing DMEM/F12 (Gibco, #11330057), 
1% N2 supplement (Gibco, #17502048), 1x NEAAs (Sigma, #M7145), and 2-mg/ml heparin 
(Sigma, # H3149). On D2, approximately 1/2 of the medium was exchanged for NIM. On D3 
EBs were plated in new 60-mm petri dishes (Corning #430166) in NIM. Half of the medium 
was changed every day until D6. At D6, BMP4 (R&D, #314-BP) was added to the culture at a 
final concentration of 1.5-nM. At D7, EBs were transferred to 60-mm dishes previously coated 
with Growth Factor-Reduced (GFR) Matrigel (Corning, #356230) and maintained with daily 
NIM changes until D15. On D16, NIM was exchanged for retinal differentiation medium 
(RDM) containing DMEM (Gibco, #15140122) and DMEM/F12 (1:1), 2% B27 supplement 
(without vitamin A, Gibco#12587-010), NEAAs, and 1% penicillin/streptomycin (Gibco, 



#15140122). Feeding was done daily until D27. On D28, EBs were dislodged from the plate by 
checkerboard scraping, using a 10-µl or 200-µl pipette tip. Aggregates were washed three times 
and then maintained in 6 well culture plate (Greiner bio-one, #657185) in RDM medium. The 
medium was changed every 2-3 days. Feeding was done every 2-3 days, depending on the color 
of the medium. This protocol also generates cerebral organoids, or cerebroids, as by-products. 
Neural organoids were transferred from the incubator at different time points of differentiation 
(D31 to D136) for OCT imaging. 

The cardiac organoid differentiation procedure was adapted from a protocol described 
previously [14, 31, 32]. Briefly, 1000 hiPSCs (the hiPSC line was generated from a healthy 
donor in the Li laboratory) were seeded in each well of ultra-low attachment 96-well plates 
(Fisher Scientific, #7201680). The cells were assembled into 3D structures by culturing in E8 
medium for 5 days (day -5 to day 0). From day 0 to day 6, cells were cultured in RPMI 
supplemented with B-27 minus insulin. CHIR99021 at a final concentration of 11-µM was used 
on day 0 and lasted for 1 day. From day 3 to day 5, cells were treated with C59 at a final 
concentration of 2-µM. The cell aggregates were transferred to 5% Poly (2-hydroxyethyl 
methacrylate) (Sigma-Aldrich, P3932) coated 24 well tissue culture plates (Fisher Scientific, # 
9761146) on day 7 and cultured in RPMI with B27 supplement until the end of differentiation. 
The fresh medium was changed every 2 days until tissue harvest. The VEGF was added to the 
culture media from day 3 to the end. On day 14 (D14), the cardiac organoids were transferred 
from the incubator for OCT imaging. 

2.2 OCT Imaging Acquisition 

The OCT imaging was performed with a visible light OCT (vis-OCT) prototype [28] developed 
at the University of Pittsburgh Department of Ophthalmology. The system covered a light 
spectrum (510 nm – 610 nm) from a supercontinuum laser (Super-K EXU-6, NKT Photonics), 
providing a 1.2-µm axial resolution in tissue. To image the organoids, a 2-D galvanometer 
scanner (Saturn 5B, Scanner Max) was used to steer the scanning beam, and a scan lens 
(LSM03-VIS, Thorlabs) was used to focus the light beam on the samples. The interferogram 
was spatially dispersed by an 1800 lines/mm transmission grating (Wasatch Photonics), 
detected by a line scan camera (spl4096-140km, Basler) with vertical and horizontal binning, 
and captured by a frame grabber (PCIe-1437, National Instruments). Hardware synchronization 
was achieved with a high-speed multifunction I/O device (PCIe-6353, National Instruments). 
The entire acquisition software was written in LabVIEW language with GPU acceleration. The 
image depth range was calibrated to 1.5-mm using microscope cover glass (12544D, Fisher 
Scientific). The field of view was calibrated using a 20 x 20 grid array with 100 µm pitch 
(R1L1S1N, Thorlabs). 

To minimize the disturbance to the organoids, OCT scans were acquired while the organoids 
stayed at their original culture plate. Prior to OCT imaging, the samples were first examined 
and imaged by brightfield and phase contrast microscopy (EVOS M5000 Imaging System, 
Thermofisher Scientific). The samples were then transferred and placed on a 3-axis translation 
stage of the OCT system. The acquisition was performed at an A-line sampling rate of 50 kHz. 
Each raster scan consisted of 500×2 A-lines per B-scan and 500 B-scans, which finished in 10 
seconds. The default field of view was set to 1×1-mm and changed to 2×2-mm if it was not 
enough to cover the large samples. For cardiac organoids, an additional M-B mode was used to 
quantify their beating in cross-sectional images. The beating scanning pattern consisted of 250 
A-lines per B-scan (equivalent to 200 fps) and 4000 repetitive B-scans at the same position. For 
a typical heat beat rate (30~100 beats per minute), the scanning pattern can collect hundreds of 
data points to capture the detailed feature of the beating cycle, especially the peak pumping 
period which usually lasts less than a few tenths of the entire beating cycle. After imaging, each 
organoid was either returned to the incubator or proceeded for end-point histological analyses. 

Following the experiment, the raw interferogram was transferred and processed in 
MATLAB to obtain the OCT images. The procedures include DC removal, dispersion 



compensation, lambda-k linearization, and fast Fourier Transform (FFT). In the B-scans, 
organoid tissues appeared as bright areas with the background and organoid hollow/chamber 
appeared as dark areas inside the tissue. To enhance the contrast of organoids, we first applied 
a local brightening filter (imlocalbrighten) and followed with a median filter (medfilt2) to 
decrease speckle noise. 

2.3 Deep Learning Segmentation 

As the imaging was performed in vitro in a culture plate, the OCT images of human organoids 
may suffer from non-uniform intensity variation, ambiguous boundaries, and hyperreflective 
outliers (specular reflection) with similar intensity to tissues. In addition, tissues and hollows 
had different shapes, sizes, and locations in OCT B-scans. Therefore, accurate segmentation of 
these regions was a challenging task, calling for an efficient combination of local/low-level 
features like edges and texture, as well as global/high-level features like shape and size, to 
achieve a decent performance. 

 
Fig.1. The architecture of the proposed OrgSegNet for deep learning segmentation of organoid 
tissue and inner structure in OCT B-scan images. A cardiac organoid is shown as a representative 
example.  



Here, we developed a deep learning model, which we called OrgSegNet, dedicated to the 
segmentation of organoid tissue and internal structures. The framework of this model was built 
on the encoder-decoder architecture of U-Net [33] and was enriched by embedding an adaptive 
dual attention module (ADA) in skip connections, and a multi-kernel receptive field module 
(MKRF) within the gateway (Fig. 1). This architecture provides three specific benefits for 
accurate organoid segmentation: a) capture and fuse low-level and high-level features with the 
encoder-decoder structure, b) extract interdependencies of features adaptively in a long-range 
global view with the ADA modules to aggregate spatial/pixel and channel-wise attention in skip 
connections, c) demonstrate the larger and multi-scale field of view to capture more efficient 
global features by embedding the multi-kernel receptive field module in the gateway. The 
details of the ADA and MKRF modules are described below: 

2.3.1 ADA module 

Inspired by the attention strategy proposed in Ref. [34] with ResNet for scene image 
segmentation and several segmentation approaches that followed this attention mechanism [35-
37], we proposed an ADA module (green and orange flow operations shown as the ADA 
module in Fig. 1) in our encoder-decoder-based segmentation model to improve the 
segmentation performance for the organoid images. This ADA module worked using the 
spatial/pixel and channel-wise attention mechanism. Firstly, the 3D encoder feature map output 
XH×W×C was reshaped into a 2D matrix X(H×W)×C , where H, W, and C indicated the height, width, 
and channel sizes of feature maps, respectively. Secondly, the map of the spatial attention 
coefficients 𝑋𝑋(𝐻𝐻×𝑊𝑊)×(𝐻𝐻×𝑊𝑊)

𝑆𝑆𝑆𝑆𝑆𝑆  was computed using Eq. (1) (green path in Fig. 1). 

                           𝑋𝑋(𝐻𝐻×𝑊𝑊)×(𝐻𝐻×𝑊𝑊)
𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑋𝑋(𝐻𝐻×𝑊𝑊)×𝑆𝑆.𝑋𝑋𝑆𝑆×(𝐻𝐻×𝑊𝑊)

𝑇𝑇 )                                  (1)  

Where XT indicated the transpose of X and ‘.’ indicated the matrix multiplication. The 
coefficients were computed with a spatial correlation between any two pixels of X and XT, and 
then a softmax function for the probability value of each correlation score. The higher 
correlations were obtained, the greater probability was assigned to the positions. After that, the 
weights of spatial attention were multiplied by the input feature map X(H×W)×C, reshaped back 
to matrix with H×W×C dimension, multiplied to score parameter α, and added to the encoder 
feature map output XH×W×C to obtain pixel-wise attention map  𝑋𝑋𝐻𝐻×𝑊𝑊×𝑆𝑆

𝑝𝑝𝑝𝑝𝑠𝑠𝑝𝑝𝑝𝑝.𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝𝑎𝑎𝑠𝑠𝑝𝑝𝑠𝑠𝑎𝑎as Eq. (2), where 
each pixel element was a weighted sum of highlighted features with original input features to 
boost extraction of local features across spatial positions. 

         𝑋𝑋𝐻𝐻×𝑊𝑊×𝑆𝑆
𝑝𝑝𝑝𝑝𝑠𝑠𝑝𝑝𝑝𝑝.𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝𝑎𝑎𝑠𝑠𝑝𝑝𝑠𝑠𝑎𝑎=𝛼𝛼 × (𝑟𝑟𝑝𝑝𝑠𝑠ℎ𝑠𝑠𝑝𝑝𝑝𝑝( 𝑋𝑋(𝐻𝐻×𝑊𝑊)×(𝐻𝐻×𝑊𝑊)

𝑆𝑆𝑆𝑆𝑆𝑆 .𝑋𝑋(𝐻𝐻×𝑊𝑊)×𝑆𝑆)) + 𝑋𝑋𝐻𝐻×𝑊𝑊×𝑆𝑆                    (2) 

The flow operation of computing the channel-wise attention 𝑋𝑋𝐻𝐻×𝑊𝑊×𝑆𝑆
𝑐𝑐ℎ𝑠𝑠𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝.𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝𝑎𝑎𝑠𝑠𝑝𝑝𝑠𝑠𝑎𝑎 (orange path 

in ADA module of Fig. 1) was similar to the pixel-wise attention with slight modifications. The 
equations to calculate channel attention coefficients 𝑋𝑋𝑆𝑆×𝑆𝑆

𝑆𝑆𝑆𝑆𝑆𝑆  and channel-wise attention feature 
𝑋𝑋𝐻𝐻×𝑊𝑊×𝑆𝑆
𝑐𝑐ℎ𝑠𝑠𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝.𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝𝑎𝑎𝑠𝑠𝑝𝑝𝑠𝑠𝑎𝑎were as below: 

                                𝑋𝑋𝑆𝑆×𝑆𝑆
𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑋𝑋𝑆𝑆×(𝐻𝐻×𝑊𝑊)

𝑇𝑇 .𝑋𝑋
(𝐻𝐻×𝑊𝑊)×𝑆𝑆

)                                            (3)  

                    𝑋𝑋𝐻𝐻×𝑊𝑊×𝑆𝑆
𝑐𝑐ℎ𝑠𝑠𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝.𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝𝑎𝑎𝑠𝑠𝑝𝑝𝑠𝑠𝑎𝑎=𝛽𝛽 × (𝑟𝑟𝑝𝑝𝑠𝑠ℎ𝑠𝑠𝑝𝑝𝑝𝑝(𝑋𝑋(𝐻𝐻×𝑊𝑊)×𝐶𝐶 . 𝑋𝑋𝑆𝑆×𝑆𝑆

𝑆𝑆𝑆𝑆𝑆𝑆)) + 𝑋𝑋𝐻𝐻×𝑊𝑊×𝑆𝑆                     (4) 

The adaptive parameters α and β were set to zero initially and learned by the model during 
the training phase to adaptively enrich local features with their global dependencies across 
positions and channels. At the end of the ADA module, these spatial and channel-wise attention 
coefficients were fused with an element-wise sum, combining the benefit from both attention 
mechanisms where the values of each local feature map were updated with a weighted sum of 
original features and interdependencies of features independent of their position and channel. 



These enriched features were concatenated to the original input features in the encoder and 
transferred to the corresponding decoder layer for further processing.  

2.3.2 MKRF module 

The local information is prone to fade, and global information is prone to be highlighted in the 
terminal layers of the proposed model due to a decrease of spatial resolution. Inspired by atrous 
pyramid pooling [38, 39], we enriched the global feature maps in the gateway layer by 
proposing a multi-kernel receptive filed module consisting of 4 dilated convolutions with 
dilation rates 𝑟𝑟 = 2, 3, 5, 7 as (Eq. 5) 

                                                            𝑦𝑦[𝑝𝑝] = ∑ 𝑠𝑠[𝑝𝑝 + 𝑟𝑟𝑟𝑟]𝑤𝑤[𝑟𝑟]𝑘𝑘                                                   (5) 

Where x, w, and y indicated the input feature map, convolution filter, and output feature 
map, respectively. r was a dilation rate determining the number of added zero values between 
two consecutive filters in each spatial dimension. This module assisted the model in learning 
contextual features efficiently without further reducing spatial resolution.  As shown in the 
gateway layer in Fig. 1, the multi-scale dilated convolutions with r=2, 3, 5, and 7 encoded global 
information with four receptive field sizes 5×5, 7×7, 11×11, and 15×15, respectively. The 
dimension of these feature maps was reduced to C/4 by passing them through four 1×1 standard 
convolutions, where C was the channel number of the original input feature map. Finally, the 
results were concatenated with the original global features and transferred to the corresponding 
decoder layer. 

2.3.3 Training and validation 

The model was trained with a set of B-scan images (N=4000), including both the retinal, 
cerebral and cardiac organoids. The ground truth of tissue and inner structure were manually 
delineated by experienced graders. The training set was further enlarged with data augmentation 
including contrast adjustment, random rotations, and transpose. The hyperparameters during 
training included learning rate (2e-3), batch size=4, epochs number=20, and RMSprop 
optimizer. A combination of Dice and Bicon loss [40] was used as a loss function. The model 
was implemented in Python 3.9 and TensorFlow v2.8.0 platforms with NVIDIA GeForce RTX 
4060 Ti and 64 GB of RAM. 

As shown in Fig. 2, the OrgSegNet segmented the organoid samples successfully. The 
network demonstrated excellent tolerance for strong specular reflection, affecting neither the 
segmentation of tissue nor the inner structure (yellows arrows in Fig. 2). The bottom supporting 
membrane of the culture plate, which had strong reflectance, was also successfully excluded 
from tissue segmentations (green arrow in Fig. 2). Additionally, as the reflectance attenuated 
significantly along depth due to the opacity of the samples (especially for the cardiac organoids, 
magenta arrows in Fig. 2), their inner structure (chamber) was not so remarkable to the tissue, 
sometimes cannot be determined/identified during manual delineation (orange arrow in Fig 2 
C). However, the algorithm avoided classifying significantly attenuated tissue regions as hollow 
(chamber) and were able to highlight inner structures that were neglected (or hard to determine) 
during manual delineation.  

Recall, precision, and dice coefficient (DIC) measurements were used for the evaluation 
with k=3 cross-validation (Table 1). The accuracy of segmentations in both tissue and inner 
structure were very high (>0.96 for tissue and >0.91 for inner structure). We noticed lower 
segmentation performance in the hollow (chamber) than the tissue, which can be anticipated 
due to the discrepancy between the ground truth and deep learning results (inset in Fig. 2 C) for 
images like Fig. 2 C that delineating and distinguishing the correct boundary of the hollow was 
challenging during manual inspection while the OrgSegNet helped identify these challenging 
inner structures. 



 
Fig.2. Representative OCT B-scan images of human organoids, the ground truth of binary 
images, and subsequent segmentations using OrgSegNet. Tissue segmentation is in cyan and 
hollows in magenta. Arrows indicate the challenging conditions for segmentation including 
specular reflection (yellow and red), base membrane of culture plate (green), reflectance 
attenuation (magenta), and ambiguous inner structure (orange). The zoom-in overlay of hollow 
segmentations on panel C inset demonstrated representative cases causing a discrepancy between 
the ground truth (green color) and deep learning (red color) results where the OrgSegNet 
highlighted the regions that are challenging in manual delineation. 

Table 1. Evaluation of deep learning segmentation performance on organoids. 

 Recall Precision Dice 

Tissue 0.968±0.106 0.965±0.095 0.983±0.060 

Hollow (Chamber) 0.944±0.117 0.917±0.178 0.919±0.177 

2.4 Quantitative Biomarkers 

With accurate and automated segmentation results, quantifications could be conducted to obtain 
the features of the organoids. For each organoid, we calculated the size (unit: mm), area (unit: 
mm2), tissue volume (VTissue, unit: mm3), hollow (chamber) volume (VHollow, unit: nL), and the 
ratio of hollow to tissue volume (unit: %). The size and area of organoid were determined by 
the maximal caliber in the axial direction and the area of region occupied by the organoids in 
the projected en face images, respectively. With the volumetric binary mask of the inner 
structure, we were able to determine if connectivity of compartments, and therefore, count their 
numbers. This is challenging in traditional 2-D images as the organoids are 3-D structure. A 
cutoff (0.01 nL, equivalent to 500 voxels) of inner structure volume was used to determine the 
chamber number of organoids in this study. Additionally, for cardiac organoids, we were able 
to observe their beating and calculate their beat cycle (unit: s), beat rate (unit: bpm), pulsation 
displacement (unit: µm), and pulsation enlargement (unit: %). The pulsation displacement was 
defined as the maximal shift of the tissue surface during the beating cycle. The pulsation 
enlargement was defined as the maximal change of tissue area. 



2.5 Immunostaining Validation 

hRetOrg and cerebroids were fixed with 4% PFA at RT for 30 min and washed 3 times with 
PBS. Subsequently, the organoids were cryoprotected in 1x PBS-30% sucrose at 4°C O/N. The 
next day, organoids were pre-embedded in a mixture of sucrose (1:1) for 30 minutes to 1 hour 
on ice and embedded in individual blocks in dry-iced 90% ethanol. Cryosections of 16 µm 
thickness were collected on Superfrost Plus slides (Fisher, #12-550-15). Once fully dried, slides 
were stored at -80°C until further processing. On the day of staining, slides were removed from 
-80°C and allowed to warm up to RT for approximately 20 min. Slides were washed 3 times 
with PBS and blocked 1 h at RT with 5% Donkey Serum and 0.1% Triton X-100 in 1x PBS. 
Primary antibodies were diluted in 2% Donkey Serum in PBS and incubated at 4°C O/N. 
Primary antibodies used included anti-Rhodopsin (Millipore, cat# MAB5356, 1:100 dilution), 
anti-M/L cone (Millipore, cat# AB5405, 1:200 dilution), anti-CTIP2 (Abcam, #ab18465, 1:300 
dilution), and anti-FOXG1 (Invitrogen, #702554, 1:150 dilution). Slides were rinsed 3 times, 
5-min each, with 1x PBS. Appropriate secondary antibodies (Thermofisher; 1:500 dilution) 
were added and incubated for 1 hour at RT, followed by 3 rinses with PBS, 5-min each. The 
slides were counterstained with Hoechst at RT for 5-min and further washed twice before 
mounting with Fluoromount-G solution (Southern Biotech, #0100-01). Slides were imaged 
using a Leica Thunder system microscope. 

2.6 Statistics 

The Shapiro-Wilk test was performed to assess the normality of quantitative features. Two-
sample t-tests were used to determine the significance (p<0.05) for size, area, and volume 
between retinal organoid and cerebroid. The Mann-Whitney U tests were used to compare 
hollow volume and ratio to total volume between the two groups. Spearman correlation analysis 
was adopted to determine the association between the parameters among the same group. An 
exponential curve was used to fit the relationship between the number of chambers and the 
chamber-to-tissue ratio in cardiac organoids. The data were presented as mean ± standard 
deviation (SD). P-values smaller than 0.01 were considered statistically significant. All 
statistical analysis was conducted using SPSS 28.0 (IBM Corporation, Chicago, IL).  

3. Results 
3.1 Retinal Organoids 

3.1.1 Appearance and Quantification with OCT 

Live hRetOrg (N=11) at various developmental stages (D31-D136) were successfully imaged 
with the high-resolution vis-OCT system. These organoids, with their detailed top and bottom 
surfaces, were confidently visualized through volumetric rendering (Fig. 3). The neural retina's 
reflective nature was evident at these stages, revealing a thick pseudo-stratified layer in both en 
face and B-scan OCT images, corresponding to bright-field and phase contrast microscopy 
observations (Fig. 3 A). Immunostaining at D117 confirmed the presence of photoreceptors 
(PRs) on the outermost side of the organoids (Fig. 3 B), whereas retinal ganglion cells (RGCs) 
were located in the innermost side of the neuroretina. However, these cell types lacked the 
uniform orientation necessary to form the multi-layer lamination structure, which was found in 
the in vivo retina. Additionally, retinal pigment epithelium (RPE) cells were either absent or 
concentrated adjacent to the neural retina (Fig. 3 C), blocking the probe light penetrating 
underneath the structure, casting strong shadows in OCT images, and therefore demonstrating 
enhanced contrast in OCT en face images compared to traditional microscopy.  



 
Fig.3. Representative images of hRetOrg and cerebroids at different time points of development. 
(A) Live hRetOrg and cerebroid at day (D) D31 in OCT and microscopy. Note the presence of 
neuroretina lamination and hollow structure in hRetOrg but not in the cerebroids, which were 
more evident in OCT B-scans. (B) hRetOrg at D117 immuno-stained for M/L cones and rods 
counterstained with Hoechst. Note the location of these photoreceptor cells at the outer edge of 
the hRetOrg. (C) OCT and microscopy images of a hRetOrg with RPE (arrows). Note the 
presence of a strong shadow on OCT scans corresponding to RPE (white arrow). (D) Cerebroid 
at D60 immuno-stained for the cerebral markers FOXG1 and CTIP2 counterstained with 
Hoechst. PR, photoreceptors; RGC, retinal ganglion cells; RPE, retinal pigment epithelium. 

The average size, area, and volume of hRetOrg were measured as 0.49 ± 0.14 mm, 0.79 ± 
0.35 mm2, and 0.26 ± 0.13 mm3 respectively (Fig. 4, Table 2). The volume was highly correlated 
to the area (R=0.88, p-value <0.01), while not to the size (R=0.28, p-value=0.40). Notably, the 
majority of hRetOrgs (10 out of 11) featured significant hollow or semi-hollow centers with 
low reflectivity, contrasting the bright neuroretina (Fig. 3 A). These hollows, being optical clear 
and lacking neuronal structure (Fig. 3 B), accounted for an average volume of 11.58 ± 14.91 
nL (Fig. 4 C), or 4.15% ± 3.99% of the total organoid volume, and were independent to the 
organoid tissue volume with no correlation (R=0.36, p-value=0.29). 

3.1.2 Classification to cerebroids  

Cerebroids are differentiated as by-products in current hRetOrg protocols. Therefore, existing 
culture methods for hRetOrg required lengthy steps of manual trimming and selection. 



Although denser and opaquer under the microscope, their appearance was similar to hRetOrg, 
making the identification and trimming challenging. OCT imaging of cerebroids (N=17, 
verified with immunostaining, Fig. 3D) from the same developmental time points as hRetOrg, 
revealed similar size (0.45 ± 0.15 mm, p-value=0.35) and volume (0.39 ± 0.23 mm3, p-
value=0.10), but absence of hollow structures (0 for manual ground truth, 0.03 ± 0.07 nL for 
deep learning segmentation, p-value<0.01) compared to hRetOrg (Fig. 4 and Table 2). 
Additionally, the cerebroid demonstrated a more regular (sphere) shape, as validated with a 
high correlation coefficient (R=0.84, p-value<0.01) between their volume and size. The area 
under the receiver operating characteristic (ROC) curve (AROC) in distinguishing hRetOrg 
from cerebroids based on the hollow structure was over 0.99 (Fig. 4F), which was significantly 
higher than that using tissue volume (AROC=0.69), indicating excellent automated and 
unbiased classification performance. 

 
Fig.4. hRetOrg and cerebroid quantitative features extracted from OCT images and OrgSegNet 
platform. (A) – (C) Comparison between hRetOrg (red) and cerebroid size (green) (A), tissue 
volume (B) and hollow volume (C). ‘*’ indicated the significance of the hollow structure 
between hRetOrg and cerebroid. (D) – (E) Hollow volume (D), and ratio of hollow per total 
organoid volume (E) for each individual hRetOrg sample. (F) The area under the receiver 
operating characteristic (ROC) curve (AROC) performance (F) distinguishing hRetOrg from 
cerebroid based on hollow structure was 0.99, much higher than 0.69 based on tissue volume.  

Table 2. Quantitative features of hRetOrg and cerebroids obtained from quantitative OCT imaging.  

 Sample (N) Size (mm) Area (mm2) VT (mm3) VH  (nL) RH/T (%) 

hRetOrg 11 0.49±0.14 0.79±0.35 0.26±0.13 11.58±14.91 4.15±3.99 

Cerebroid 17 0.45±0.15 1.12±0.39 0.39±0.23 0.03 ± 0.07 0.01±0.02 

3.2 Cardiac Organoids 

3.2.1 Appearance and Quantification with OCT 

Cardiac organoids (N=7), as visualized by vis-OCT, displayed an irregular shape (Fig. 5 A) 
with bright reflectance and significant signal attenuation along their depth (Fig. 5 B). This 



attenuation may result from the cardiac tissue's lower transparency. Their size (0.39 ± 0.02 mm) 
and volume (0.38 ± 0.06 mm³) were similar or smaller compared to retinal organoids. 

3.2.2 Chambers 

All cardiac organoids featured chambers, appearing as weakly reflective spaces in OCT images 
(Fig. 5 B). These chambers were larger (58.94 ± 54.98 nL) and occupied a greater proportion 
(14.34% ± 11.86%) of the organoid compared to those in hRetOrg. With the 3-D segmentation 
of the chambers, we were able to count the number of chambers. We observed multiple 
chambers in these organoids (average 8 ± 4) (Fig. 5 B and C) and found an exponential 
relationship between the volume percentage of the chambers and their number (C/T = 34.82×e-

0.156N, R2=0.82) (Fig. 5 D), indicating a potential tendency for chambers to merge during 
development. A predominant chamber, accounting for 73.26% ± 17.90% of all chamber 
volumes, supported this hypothesis. 

 
Fig.5. (A) The 3D and projected en face visualization of a cardiac organoid by OCT. (B) cross-
sectional and depth plane visualization of chambers (marked with stars) in cardiac organoids, as 
well as their segmentations. Each isolated chamber was assigned a different color. (C) 3D 
visualization of the segmented chambers of cardiac organoid. (D) The association of the number 
of chambers with the percentage of chamber to total volume. An exponential fitting (C/T = 
34.82×e-0.156N) was performed with an R-square of 0.82. (E) Projected en face image of an OCT 
beating scan for cardiac organoids. Note the occasional specular reflection due to the movement. 
(F) Appreciation of the cardiac beating by the axial position of detected organoid tissue surface. 
(G) Appreciation of the cardiac beating by examination of the axial position in specific locations 



of organoids (point c and 1-4 in E), in contrast to the static background board (point b1 and b2 
in E). 

3.2.3 Cardiac beating 

The beating motion of cardiac organoids was captured by OCT M-B-scan images at the same 
cross-section. Cardiac motion altered light propagation, leading to periodic specular reflections 
at same locations. (Fig. 5 E). The area of organoid tissue periodically changed due to beating, 
indicating a 3.84% ± 2.04% enlargement during beating. Displacement (16.22 µm ± 7.85 µm) 
varied across different locations (Fig. 5 G). By identifying the time points with peak values for 
the displacement, we determined the beat cycle and rate as 1.72 s ± 0.16 s and 35.50 ± 3.51 
bpm, respectively. 

Table 3. Statistical features of cardiac organoids obtained from quantitative OCT imaging. 

Measurement of Cardiac Organoid 
Size (mm) 0.39±0.02 

Area (mm2) 1.14±0.21 
Volume (mm3) 0.38±0.06 

Chamber Number (N) 8±4 
Chamber Volume (nL) 58.94±54.98 

Max / All Chamber (%) 73.26±17.90 
Chamber / Total Volume (%) 14.34±11.86 

Beat Cycle (s) 1.72±0.16 
Beat Rate (bpm) 35.50±3.51 

Pulsation Displacement (µm) 16.22±7.85 
Pulsation Enlargement (%) 3.84±2.04 

4. Discussion  
In this study, we employed noninvasive, 3D OCT imaging for human organoids, highlighting 
its advantages over traditional histological methods (requiring tissue fixation, sectioning, and 
staining). OCT's non-destructive nature [24, 41] is pivotal for observing dynamic biological 
processes and long-term organoid development [24, 42, 43]. Its capability for rapid, real-time, 
high-resolution, 3D imaging surpasses the time-consuming and labor-intensive nature of 
traditional 2D histology, providing a more complete understanding of whole organoid 
architecture. 

Significantly, we developed OrgSegNet, a deep learning network, to perform automated, 
quantitative OCT imaging of organoids. This model employs novel adaptive dual attention and 
multi-kernel receptive field strategies to effectively segment both tissue and hollow (chamber) 
structures. To the best of our knowledge, OrgSegNet stands out as the first deep learning 
network dedicated to segmenting 3-D organoid tissue and inner structure automatically in OCT 
images [42, 44], providing a novel high-level morphological characterization technique to the 
field of organoids. OrgSegNet demonstrated robust segmentation performance across retinal, 
cerebral, and heart organoids with a single training process, reducing human error and bias in 
image interpretation. This feature is vital for reliable organoid characterization, which is 
essential for large-scale studies and tracking changes over time [45]. 

The quantitative measurements offer precise data on the morphological characteristics of 
organoids. For instance, using the hollow as a feature [17], we successfully distinguished 
hRetOrg from cerebroids. This distinction is relevant for several reasons. First, accurate 
classification ensures the purity of hRetOrg cultures. Since hRetOrg is used to model retinal 
development and disease, any contamination with cerebroids can confound experimental results 
in the validity and reproducibility of research findings. Second, distinguishing hRetOrg from 
cerebroids allows for more efficient use of resources as culturing human organoids is a 



resource-intensive process, requiring significant time, materials, and financial investment. 
Identifying and segregating non-retinal tissues early in the process helps in directing resources 
toward the most promising specimens for further development and study, thereby improving 
the cost-effectiveness of the research. Finally, for hRetOrg to be considered for therapeutic 
applications [46], such as disease modeling, drug screening, or even cell replacement therapies, 
they must be free from non-retinal cells that could introduce unwanted variables or adverse 
effects. Clear classification is therefore critical in the context of translational medicine, where 
the ultimate goal is to develop safe and effective treatments for retinal diseases. 

For cardiac organoids, the ability to accurately measure beating parameters, such as beat 
rate and pulsation displacement, represents a significant leap in understanding the functional 
dynamics of these miniature heart models [25]. These parameters offer a direct insight into the 
physiological state of the organoids, extending beyond mere structural analysis to encompass 
the functional vitality and responsiveness of the organoid tissue. The beat rate, a critical 
indicator of cardiac health, can reflect the organoid's maturity and its similarity to in vivo heart 
tissue, providing a real-time assessment of cardiac functionality. Pulsation displacement, on the 
other hand, offers a measure of the contractile strength and rhythmicity of the organoid, which 
is essential for understanding cardiac mechanics at a microscale. Crucially, these functional 
biomarkers open up possibilities for high-throughput screening of cardiac drug efficacy and 
safety. For instance, changes in beat rate or rhythm in response to pharmacological agents can 
signal potential cardiotoxic effects, a primary concern in drug development [47]. Conversely, 
improvements in these parameters might indicate therapeutic benefits, especially in the context 
of regenerative medicine or genetic therapies targeting cardiac conditions [14, 48]. This 
capability to quantitatively assess cardiac function in vitro provides a valuable tool for drug 
discovery, allowing for early detection of adverse cardiac effects and the optimization of 
therapeutic strategies. Additionally, in genetic studies, alterations in these beating parameters 
can help elucidate the roles of specific genes in cardiac development and disease [32]. In 
summary, the measurement of beating parameters in cardiac organoids offers a comprehensive 
functional assessment, bridging the gap between cellular models and whole-heart physiology, 
and holds great promise for advancing cardiac research and pharmaceutical development. 

However, our study faces limitations. One primary limitation of our study is the potential 
specificity of the deep learning algorithm, OrgSegNet, to the types of organoids studied—
retinal, cerebral, and cardiac organoids. The unique morphological and functional 
characteristics of different organoid types may require distinct algorithmic approaches or 
adaptations of the existing model, raising questions about the scalability and adaptability of the 
method to a broader range of organoid systems, especially the deep layers of larger or denser 
samples that OCT have limited depth penetration. Additionally, the accuracy of deep learning 
models heavily relies on the quality of ground truth data, which often requires expert manual 
annotation, a time-consuming and potentially biased process. Future development of 
annotation-free methods might be of high interest. Furthermore, while the current method 
provides decent morphological and functional insights, it might not capture certain cellular or 
sub-cellular details that are crucial for some research purposes, pointing towards the need for 
more functional measurements [18, 22], and/or the integration with other imaging modalities, 
such as fluorescence microscopy or electron microscopy, to achieve a more comprehensive 
organoid characterization. This integration could provide a multi-scale understanding of 
organoids, from macroscopic structure and function to microscopic cellular details. Lastly, the 
application of this technology in clinical settings (such as cell transplantation) or more complex 
organoid systems, such as those involving multiple organ types or organ-on-a-chip models [49], 
remains to be explored. These future applications would not only enhance our understanding of 
human organ development and disease but also open new avenues in personalized medicine 
and drug testing. Therefore, addressing these limitations and exploring these future directions 
will be crucial for realizing the full potential of OCT and deep learning in organoid research 
and beyond. 



5. Conclusion 
In conclusion, OCT imaging combined with deep learning represents a significant advancement 
in organoid research, allowing precise quantification of biomarkers like size, volume, and 
beating dynamics. These technologies may offer a standardized approach to organoid 
characterization, facilitating comparisons across studies and enhancing our understanding in 
areas such as developmental biology, disease modeling, and regenerative medicine. 
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